BIOL 266: Computational Biology

Final Exam Review

Unit 0: Introduction

What is Computational Biology

- The application of computational tools to solve biological problems
- Under computational biology: Bioinformatics More emphasis on analysis of high-throughput data

- Tasks of Computational Biology

- o Pattern discovery -- Learn patterns from biological data
- o Prediction -- Use patterns to predict biological function
- o Integration -- Develop models that connect levels of information
- o Simulation -- Model behavior of biological systems on a computer
- o Engineering -- Design novel biological systems for specific purposes
- o Therapy -- Design molecular therapeutics to combat disease

Unit 1: Molecular Biology and Evolution

The genetic material -- DNA

- o DNA polymers are specific sequences of nucleotides
 - Each nucleotide differs by the nitrogenous base it contains
- All of the organism's DNA-based genetic instructions make up the genome
- Genome is composed of genes, which are DNA instructions for making proteins

Central Dogma of Molecular Biology

- DNA is transcribed into RNA via RNA polymerase
- RNA is translated into proteins by ribosomes

- RNA

- 3 Types:
 - mRNA messenger RNA
 - tRNA transfer RNA
 - rRNA ribosomal RNA
- o RNA, like DNA, can be single or double stranded, linear or circular
- Unlike DNA, RNA can exhibit different conformations
 - Different conformations permit the RNAs to carry out specific functions in the cell
- Contains uracil (U) instead of thymine (T)

- Gene Expression

- Use DNA to make mRNA and proteins
- RNA polymerases look for promoter sequences to recognize beginning of genes
- o Prokaryotes use positive and negative regulation for transcription
- Eukaryotes are much more complex promoters and enhancers

Open Reading Frames (ORF)

- Long stretches of DNA that are un-interrupted by stop-codons therefore encode protein
- Gene = ORF + additional regulatory information
- Start at AUG start codon, run until stop codon (UAG, UAA, UGA)

o Stop codons are 3/64, or expected about one every 20th codon

- Protein Structure

- o **Primary structure**: from sequence and chemical properties of the amino acids
 - Hydrophobic: AILMPVFW
 - Hydrophilic (polar): CNQSTYG
 - Charged: (-) D E, (+) K R H

Sequencing

- o Determining the exact nucleotide sequence of DNA
- Methods
 - Maxam-Gilbert Method chemical degradation
 - Dideoxy (Sanger) Method chain termination
 - Next-generation (high-throughput) many types
 - Next-generation (high-throughput) many types

- Evolution

- Changes in inherited characteristics of biological populations over successive generations, caused by mutations
- Generates diversity of genotype & phenotype
- Types of mutations
 - Point mutation
 - Duplication
 - Insertion
 - Deletion

- Homology

- similarity due to common ancestry
- The genes and genomes of different species share significant similarity due to homology (common ancestry)
- Evolutionarily related implies homologous

Unit 2: Sequence and Database

- History of Sequencing

- o First complete **protein sequence**: in 1955, insulin
- Nucleotide sequence: Development of cloning and then later PCR greatly increased sequencing of DNA

Genome sequence:

- Bacteriophage Φ X174 (5386 bp) Sanger et al. 1977
- First Bacterial genome was sequenced in 1995 (Haemophilus influenzae)
 at TIGR (1.8 Mb)
- First Eukaryotic genome: Saccharomyces cerevisiae
- Draft of Human Genome (2001)

Flow of Information

- The data is **curated**, **annotated** and **released** to the public
 - Core data: key information in the database entry and minimal information required to identify the data
 - Annotations: all additional information, secondary information, may change over time
- o Data may be re-organized or re-annotated to make it more accessible to users

- Storage of Data

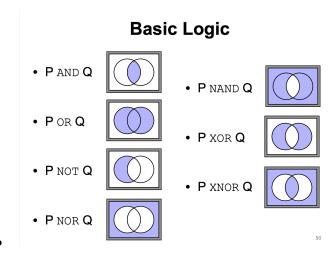
- o Flat File:
 - Data (e.g. sequences) are stored as a text file or a collection of text files
 - flat, as in a sheet of paper → Flat File

Relational File:

 Data stored within a number of tables <u>linked together</u> by a shared field, the **key**, to handle large amount of data

.fasta File:

- Contains header followed by raw data
- NCBI/Genbank Nucleotide Database


- 3 parts: Header, features, sequence (each with assertion number and version number)
 - Assertion Number: Identifiers for specific DNA and protein sequence records
 - Features can be assigned to different regions. It can also include a feature key (a keyword indicating the functional group)

NCBI/UniPortKB Protein Database

 Almost all protein sequences are derived from translation of nucleotide information

- Accessing the Database

- Databases composed of entries
- o Programs are designed to match your query with entries that are relevant
 - Query: name, features, identifier, etc.
 - Yet, using names may not be consistent due to different input
- o In many molecular biology databases you can impose **limits** on your searches
 - Use of Logic Operators

 Controlled vocabularies or ontologies can also narrow searches by clearly defining boundaries

- Data Quality

- Databases are screened to reduce redundancy and improve search efficiency
- Databases are under automatic and manual quality control

Unit 3: Pairwise and Local Sequence Alignment

Sequence Alignment

- o identification of character matches preserving character order → fundamental
 tool of bioinformatics
- A true alignment of nucleotide or amino acid sequences is one that reflects
 evolutionary relationship between two or more sequences that share a
 common ancestor → homology
- Two types of alignment:
 - Global: attempts to align the entire sequence
 - Local: stretches of sequence with highest density of matches are aligned
- Important for discovering functions, structural information, evolutionary information; the result reveals similarity, conservation, and evolutionary relationships

- Scoring Alignments

- o Good alignment will have many matches, few mismatches, and few gaps
- The higher the score, the better the match
- We use a scoring matrix to assign alignment scores
 - Common nucleotide matrix: Identity matrix; BLAST matrix;
 Transition/transversion matrix
 - Common protein matrix: BLOSUM62
 - Gap may have origin penalty and extension penalty

Computing Alignments

- We can look through all alignment possibilities → takes a very long time →
 exhaustive approach
- Instead, we use dynamic programing -> solves the problem by breaking it down

- The Needleman-Wunsch Algorithm for GLOBAL Alignments

- o http://experiments.mostafa.io/public/needleman-wunsch/
- o Initialize first row and column by multiply gap penalty
- For a particular cell

- Take value in cell immediately above add this value to the gap penalty (vertical moves imply a gap)=score
- Take value in cell immediately to the left add this value to the gap penalty (horizontal moves imply a gap) =score
- Take value in cell at immediate diagonal and add a match bonus or a mismatch penalty IF the residues match or mismatch respectively=score (e.g. if match =1 then add 1, if mismatch=0 then add 0)
- Choose the direction that had the highest score and that equals the path that the alignment will go
- The Smith-Waterman Algorithm for LOCAL Alignment
 - o https://gtuckerkellogg.github.io/pairwise/demo/
 - o Very similar to Needleman-Wunsch
 - Uses a harsher penalty for mismatches
 - example: match = 1, mismatch = -1, gap = -1
 - One more possibility is added:
 - if the score is **negative**, put in a **zero** instead
 - Find the maximum value in the table, and go backwards from there until you reach a zero

Unit 4: Database Homology Search

Database search

- Find homology using one sequence query → align it against all target sequences in the database
- Each target must be given a score reflecting degree of similarity
 - **Bit Score** → score obtained for local alignment → higher = better
- We then need to estimate the **probability** that the match could of occur by chance (ie: statistical significance)
 - E Value → The number of matches with scores equivalent to or better than S (bit score) that are expected to occur in a database search by chance
 - The closer E Value is to 0, the better
 - Usually, E < 0.01 (borderline significant),..., E < 1e-10 (highly significant)
 - Significant sequence similarity indicates homology; Yet, non-significant
 sequence similarity does not indicate lack of homology
- One method: SSEARCH
 - Use S-W against all sequences, and sort by score and probability
 - Problem: speed

- BLAST - Basic Local Alignment Search Tool

- o http://www.ncbi.nlm.nih.gov/BLAST/
- A heuristic procedure → avoids looking at all possibilities
- Word-based method (k-tuples) that initially finds ungapped, locally optimal sequences alignments
 - Could also have larger word length but permits inexact matches between words
 - Length is usually 3 for protein and 16 for nucleotide
- Many types of BLAST from NCBI
 - blastp: protein query against protein database (db)
 - blastn: nucleotide query against nucleotide db

- blastx: translated nucleotide query against protein db
- tblastn: protein query against translated nucleotide db
- tblastx: translated nucleotide query against translated nucleotide db
- PSI-Blast: detection of <u>remote protein homology</u> using profiles
- o It also conders different **reading frames** → forward 3 and reverse 3 = total 6
- Simplified procedure:
 - Break query into words
 - Search for (exact) word matches in db
 - Extend the match in both directions until alignment score falls below a fixed threshold (called High Scoring Pairs, HSP)
 - Merge HSPs into longer segments and allow gaps
 - Report E Values and S Values (hit scores)

- Artifacts about Database Search

- Longer sequence = higher score (since more possible matches)
- Query with repeats, low complexity regions, and short query may also cause problems
- Always question about your search result!

Unit 5: Multiple Sequence Alignment

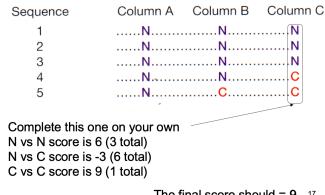
Multiple Sequence Alignment (MSAs)

- o Alignment of more than 2 sequences at the same time
- Basics of phylogenetics reconstructions (family trees) to find conservation and variation
- More complicated as the number of sequence increases, yet it gets more accurate
- It is computationally difficult
 - Insertion of a nucleotide in one sequence requires that a gap be added to every other sequence → Causes problem when scoring
 - Order in which sequences are added to an MSA can also affect end result

Computing MSAs

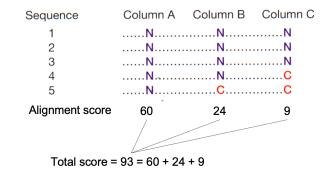
- Challenges:
 - Finding the best alignment that takes into accounts mutations/gaps for
 ALL sequences
 - Scoring entire alignment
 - Placement and scoring of gaps
 - Can't simply extend N-W or S-W → it will be very slow

We use progressive approach


- A form of heuristic approach
- Build up alignment, and add one sequence at a time
- Start with most closely related sequences
 - May not be the most correct/optimal one, but we hope it is close enough

o Ex: ClustalW Algorithm

- Align all possibilities using pair-wise alignment → called "all by all"
 - Ex: for abc, do ab, ac, and bc
- Calculate alignment score for each and create a guide tree based on scores – closest sequence will be neighbours


- Progressively align everything based on the location in the guide tree
- **Scoring MSAs**
 - Using sum of pairs method for the overall alignment
 - Add the score for all pairs for each column, then sum all the score

Scoring MSAs: "Sum of Pairs" method

The final score should = 9 17

Scoring MSAs: "Sum of Pairs" method

Visualizing MSAs

0

- Colouring by **property** or **conservation**
- Conservation
 - Evolutionary conservation is plotted for each column
 - Regions of high conservation may be particularly important
 - Variable regions are often less important (but not always, since they may underline evolutionary changes in function)
 - Can done by conservation profile or consensus sequence

- Visualizing alignment as logos
 - Convenient way of visualizing patterns in a MSA without looking at full
 MSA
 - Each column of an alignment is represented as stacked letters
 - Height of letter reflects its evolutionary conservation (more specifically its information content) in the alignment → taller = better conserved
 - Easy to see what regions are conserved/unconserved

MSA Programs

- Clustal: web-based http://www.ebi.ac.uk/Tools/msa/clustalo/
- Note: MSA and PSA programs will align anything you give it, but it does not always mean that there is anything significant → garbage in, garbage out

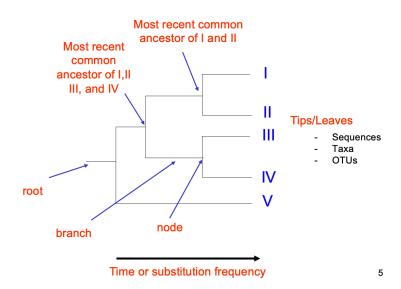
- MSA Databases

- We can **precompute** and store alignments of sequences
- Ex: Uniref50 and Uniref90
 - Clustered sequences with no more than 50% and 90% identity
- Other databases:
 - PFAM A database of protein alignments
 - Database of protein domain families based on the protein profile
 of Hidden Markov Models (HMMs)
 - Proteins are often composed of multiple "domains" that are structurally, functionally, and evolutionarily distinct
 - DFAM A database of DNA alignments
 - RFAM A database of RNA alignments

Unit 6: Phylogenetics

- Phylogeny

- Hypothesis of the evolutionary history of a group
- All life forms are related together by descent
 - Use phylogeny to explain diversity
- A **phylogenetic tree** is a graphical summary of the history evolution (phylogeny)


Phylogenetics

- Study of evolutionary relationships using gene sequences
- A phylogenetic analysis of a family of sequences may provide information on how the family diversified during evolution

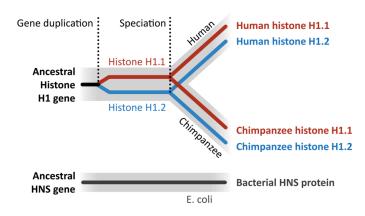
- Species Tree

Structure of a basic tree

Basic tree structure

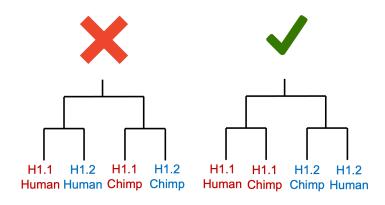
Consists of root, branch, node, and tips

Species Tree


- phylogenetic tree that represents the evolutionary pathways of a group of species
- Nodes represent common ancestors

- Bifurcations (splits from nodes) represent speciation events
- Scaled and Unscaled Trees
 - Phylogram: length means evolutionary distance (scaled)
 - Cladogram: only the structure is important, branch length is not (unscaled)
- Rooted and Unrooted Tress
 - Unrooted if we cannot find the root of the tree.
 - we can force the root to be anywhere to produce a rooted tree ->
 but that rooting can be right or wrong!
 - To root correctly → use outgroups
 - Root is on the branch leading to the outgroup

- Gene Tree

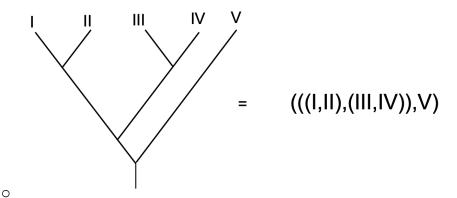

- Based on molecular phylogenies
 - Traditionally, phylogenies based on morphological (phenotypic) traits
 - Yet, similar phenotype does not always mean homology → might be due to convergent evolution
 - Molecular phylogeny is based on DNA/protein alignment across species
 - More reliable and contain more data
- Gene tree models evolution of a gene family
 - (split from) nodes could represent:
 - Speciation events, OR
 - Gene duplication events
 - Gene trees can be used to infer species tree

Gene duplication & speciation

, and when grouping by

homology (share a common ancestry)

0


0

Homologs

- Sequences that share a common ancestry (ie: homologous sequences)
- Types of homologs:
 - Orthologs
 - Related by **speciation events** → same gene in different species
 - Paralogs
 - Related by gene duplication → within or between species
 - Xenologs
 - Related by lateral gene transfer
- o We want to use **orthologs** to infer phylogeny of a species
 - Usually use **rRNA** a universally conserved orthologs

- Store Phylogenetic Trees

Use Newick Format

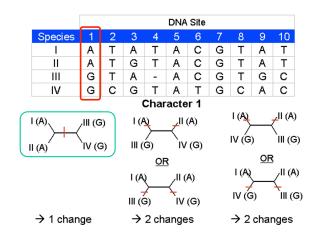
Order does not matter, only groups does

- Methods for Tree Reconstruction

- We start from multiple sequence alignment → the better the alignment, the
 better the tree
- Distance Matrix methods compute evolutionary distances and constructs tree
 based on distances → Distance based
- Maximum Parsimony methods search for shortest pathway leading to character states (tree with shortest length) → Character based
- Maximum Likelihood methods compute trees based on model of evolution and best tree is the one with highest maximum likelihood score → Character based
- No method is guaranteed to produce the correct tree
 - Since results are only hypotheses
 - Use multiple methods to compare the results
 - Yet, if both distance and character-based methods produce similar trees,
 the trees are likely to be of high quality

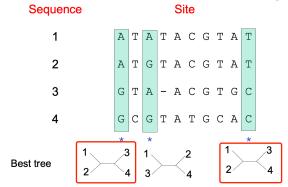
- Distance Matrix Methods

- Use a distance matrix
- o UPGMA Unweighted Pair Group Method with Arithmetic Mean
 - Developed in the 1950s for analyzing <u>morphological characters</u> (not for tree reconstruction!)


- Takes data and creates a table of "distances" for all pairwise comparisons
 - % differences between sequences → P distance (# difference/# sites)
- Then reconstruct based on the table
- Steps
 - Examine sequence alignment and create a pairwise distance matrix of number of non-matching nucleotides
 - Find the **smallest distance**, group them
 - Create a new matrix, with the new group in place
 - The new score is the average of the old ones
 - Ex: the new group is DE, then A-DE is (D-A + E-A)/2
 - Repeat until all taxa is combined into a tree
- A clustering method → we are making a lot of assumptions
 - No implication of underlying evolutionary mechanism
 - Tree produced <u>not</u> guaranteed to have the smallest total branch length
- Neighbour Joining (NJ) Method
 - Based on minimal evolution principle
 - Fewest evolutionary steps are most likely
 - Also used in maximum parsimony method
 - Improvement over UPGMA
 - attempts to produce the tree with the smallest sum of branch lengths
 - Among all possible pairs of OTUs, the one that gives the smallest sum of branch lengths is chosen.
 - These OTUs are then regarded as a single OTU and pairwise comparisons are done again to create a new distance matrix

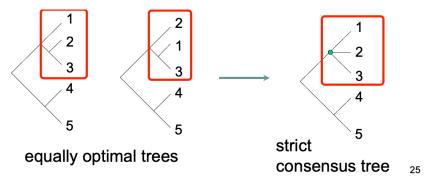
Character Based Methods

Use multiple sequence alignment directly

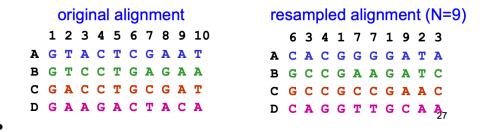

Maximum Parsimony Method

- Find the tree with the fewest changes → minimal evolution principle
- Evaluates many possible trees to find which tree(s) are consistent with the fewest # changes
- We use phylogenetically informative sites to find the better trees
 - invariant sites (completely conserved) are uninformative →
 those sites do not tell us which tree is better
 - Informative sites, in general, must have:
 - o at least **two different** characters (nucleotides or AAs)
 - each character has to be present more than once
- Steps:
 - Identify how many possible trees exist for the data set (4 taxa = 3 unrooted trees)
 - Examine each informative site and determine which tree is preferred
 - Preferred: fewest number of ancestral substitutions

 For all informative sites in the entire alignment tally the number of times each tree is preferred


Example: Maximum Parsimony

- The one with the greatest number in the tally is the most parsimonious tree
 - o you can have more than one solution
- Maximum-Likelihood Methods and Bayesian Methods
 - Both look through many possible trees to find the best one
 - ML: Finds the tree that maximizes the probability of the alignment (probability of data given a certain tree)
 - Bayesian: Finds the tree that maximizes the probability of the tree given the data


Consensus Trees

- Parsimony and, to a lesser extent Likelihood methods can sometimes produce
 many equally optimal trees
- Consensus tree combines ambiguous nodes within equally optimal trees
 - strict consensus (all equivalent trees agree), or
 - 'majority rule' consensus (more than half the trees agree)

- Quality of Trees

- Bootstrap Confidence
 - Steps:
 - Start with a multiple sequence alignment
 - Divide the alignment into a set of N ordered sites
 - Randomly choose N sites from the alignment, with replacement (can choose a particular site more than once)
 - Recalculate tree, often 1000 times or more
 - Determine the **frequency of each node** within the replicates

- Record Bootstrap confidence level:
 - the percentage of times that clade is present in the collection of trees → you want as close to 100 as possible
 - The less supported (low bootstrap score) groupings can be "collapsed" (ungrouped) so that we don't make unsupported claims about their order of splitting

Unit 7: Structural Biology

- Protein Structure

- Crucial to understanding how a protein works, and provides a framework for explaining molecular biology
- Organization of structures
 - Primary: linear sequence of amino acids
 - Secondary: α -helix (A), β -sheet (B), β -turn (C)
 - Tertiary: overall three-dimensional shape of a polypeptide chain
 - Quaternary: two or more polypeptide chains held together by noncovalent forces, in precise ratios with a precise 3D configuration
- Sidechains of Amino Acids
 - What makes protein unique and determines the fold
 - Vary in size, charge, polarity, and shape

Hydrophobicity

- One of the governing principles of protein structure
- Non-polar side chains are similar to oil-like solutes
 - Interaction with water is unfavourable
- Hydrophobic collapse: folding nuclei formed by core hydrophobic residues
 - Charged AAs are often excluded from the protein interior
 - Exterior is mostly charged, yet you still do find a lot of charged side chains (about 1:1 charged: uncharged)

- Protein Data Bank

- Stores .pdb files → 3D atomic resolution of a molecule and a 4 digit identifier
- Different structural visualizations:
 - Ball and stick
 - main chain bolder than side chains
 - Sometimes represented as "ball and stick"
 - Gives a lot of information

Ribbon

- course of the chain is represented by smooth interpolated curve
- chevrons indicate chain direction
- only gives the information of the backbone

Cartoon

- cylinders represent helices
- arrows represent strands of sheet
- easy visual information about secondary structure

Structural Determination

- o Proteins generally fold into single, stable 3D structures based on their sequence
- Lowest energy state, most stable → native state
- o Determined by **favorable interactions** within/between amino acids
- Structure can be determined experimentally and in some cases reasonably approximated in silico (using computers)

Experimental Determination

- X-ray crystallography
- Nuclear magnetic resonance (NMR)
- Cryo-electron microscopy (cryo-EM)

Prediction of Structure

- **Ab initio** → from first principles
 - Energy minimization → Compute energies associated with structures → computationally very challenging
 - Issues: Local minima traps, single domain vs multi-domain, energy functions

Comparative modeling

- Template-based, uses existing fold information from PDB
- threading (fold-recognition) and homology modeling

- Ab Initio

Based on first principle of Energy minimization

- find the most stable conformation (3D position of all atoms) based on energy functions (CHARMM)
- Parameters include bond angles and interactions between atoms:
 - Primary chemical bonds
 - Weaker interactions
- Find the "folding tunnel"
- Computational issues
 - Are the parameters complete/accurate?
 - Search space is massive
- o Simple proteins can usually be modeled based on few parameters
- Larger proteins usually have too many parameters to examine exhaustively,
 therefore heuristic approaches must be used
- Local Minima Issue
 - Not looking at all possibilities (heuristic methods) means falling into local optimums
 - Impossible to distinguish from global optimum (if optimum is unknown)

Solution to Local Minima Issue

- Steepest descent
 - estimates energy at current conformation
 - changes coordinates to move directly down gradient
 - Stop when can't go any lower -> no global
- Conjugate gradient
 - uses two successive gradients to make an intelligent guess at the location of the minimum
- Newton-Raphson
 - gradient of the gradient (second derivative)
 - works well, but computationally expensive
- Monte Carlo Procedure
 - Uses random search

- Useful for finding the minimum of a function of many variables
- Steps:
 - Generate random set of values for variables (i.e., a random conformation)
 - Perturb variables to generate a **neighbouring conformation**
 - Calculate the energy of the new conformation
 - Decide whether or not to accept the change or try another one
 - If energy decreases (i.e., the step creates a better state), then <u>accept</u> (the perturbed conformation becomes the new current conformation)
 - If the energy increases or stays the same, <u>sometimes</u>
 accept the new conformation
 - this helps avoid local optimum solutions
 - Allows the temporary movement to 'worse' solutions
 - Go back to step 2 and repeat until exit condition

Levinthal's Paradox

 Does nature really explore all possible protein folds until it finds the lowest energy one? Because that would take very long... yet protein folding is FAST

- Comparative modeling

- Homology Modelling
 - Most reliable method of modeling protein structure
 - Requires detectable sequence homology to existing structures
 - These structures are used as **templates**
 - At least 40-50% identity required
 - But higher identities are much better (e.g., 75% +)
 - **E-value** must be significant as well (of course)
 - Use of multiple template can increase accuracy

- Structurally reliable alignments rely on sequence identity and length:
 - Shorter sequence needs higher minimum identity
- Steps:
 - Template selection (e.g., top BLAST match from PDB)
 - Align target to template
 - Generate backbone as template
 - Loop modeling (insertion/deletion)
 - Variations between the template and target sequences are most likely in loop regions
 - Deletions easier than insertions → just remove it
 - Insertions modeled as loops → energy minimization
 - Side-chain modeling
 - Model optimization
 - Model validation: if poor quality, go back to (1) or (2)!
- o Fold Recognition Threading
 - When template is not present
 - There are only about 2000 ways that a protein can fold → same fold can occur for many different proteins
 - Basic idea:
 - For each possible fold structure
 - o pull string of amino acids (target) through fold
 - examine (score) the compatibility of each amino acid with that fold
 - If score is significantly high, template is assumed to fold in much
 the same way as that structure
 - try many alignments and try all templates, to see which model is the best

- Evaluating Model Quality

- Force Fields
 - Residues in energetically unfavoured environment; energy minimization

Ramachandran plot

- Main chain structure can be approximated using the sequence of 3 angle values for each amino acid
 - N-Caplha (phi)
 - Calpha-C (psi)
 - Angle of rotation around the peptide bond (either trans or cis)
- The plot separates into areas of possible and preferred conformations for amino acid residues
- Areas of the plot indicate likelihood of alpha-helices and beta-sheets
- See if the structure falls into expected region of bond angles

- Structural Alignment

- How similar our structure is to other structures
- This can sometimes, but not always, be inferred using sequence homology (i.e., BLAST)
 - Structure is more conserved than sequence information throughout evolution
 - Sometimes, structures might be unidentifiable at the sequence level, but still have similar structure
 - Sometimes aligning sequence information without structural data is misleading
 - Can miss homologies, especially if distantly related
- Distantly related proteins can be detected based on conserved spatial contact patterns between residues
- Successful in finding very distant evolutionary relationships
- Two commonly used tools:
 - DALI and VAST (Vector Alignment Search Tool)

Unit 8: Genomics

- Genome

- full complement of genetic material within an organism or cell/tissue sample of interest
- Genome sequencing encompasses:
 - Organelles, plasmids, viruses, prokaryotes, eukaryotes
 - Single cell sequencing, cancer genomics
 - Environmental DNA samples (metagenomics Collection of genomes)
- Fundamental problem: A fundamental problem of genomics is the Genotype-to Phenotype problem: still largely unsolved
- Steps in genome analysis:
 - Selecting an organism → collect sample → sequencing → genome
 assembly → genome annotation

- Selecting the Genome

- The selection is based on:
 - Genome size
 - Cost
 - Relevance (disease, biological question, agriculture, etc.)
- Can also sequence 1 individual or multiple individuals
 - Multiple individuals example: 1000 Genome Project, look for genetic diversity by examining 1000 individuals' whole genome

Sequencing the Genome

- o 2 main approaches:
 - Whole-genome shotgun sequencing (WGS)
 - first done by Sanger on Bacteriophage Φ X174 and then used by
 Venter and Colleagues (Celera)
 - Hierarchical shotgun sequencing (more traditional)
 - Divide the genome up to regions and line them up
- Terminologies

- Read an <u>individual sequence fragment</u> (output by sequencer) often short
- Contig set of <u>overlapping clones/sequences/reads</u> from which a longer sequence can be obtained. Contigs are derived from <u>assembling the</u> reads (but not necessarily the whole genome)
- Scaffold <u>ordered set of contigs</u> placed on the chromosome (may contain missing sequences and gaps)
- Draft sequence <u>incomplete sequence</u> of the genome (more sequencing still in progress) (most in NCBI database are draft sequences)
- Finished sequence genome is completely sequenced with no gaps
- STSs: Sequence-tagged sites
 - short segments of unique DNA sequence on a chromosome
 - usually defined by a pair of PCR primers that amplified only one segment of the genome
 - used as '<u>road markers</u>' on the chromosome → orientation
- ESTs: Expressed Sequence Tags
 - unlike STSs, ESTs are <u>from transcribed regions</u> (regions that made mRNA)
 - short segments (<500 bp) from cDNA
 - identify coding regions
- RNA-seq: related approach that sequences the full complement of expressed transcripts in a sample

Shotgun Sequencing

- Random fragmentation of genome by shearing or restriction
- <u>Universal primer</u> used to sequence random selection of fragments
- Sequences assembled into contigs
- Gaps are targeted for additional specific sequencing; Overlaps are the original sequences
- Can only work alone → since otherwise there will be repetition work

- Hierarchical Genome Sequencing
 - Also called: top-down, map-based, ordered clone, clone-by-clone
 - Breaks down genome into smaller and smaller pieces → Divide into large segments of known orders
 - Allows for:
 - assembly of <u>high resolution</u> physical and genetic maps
 - global groups to work together without repetition
- Example: Human Genome Project
 - Used hierarchical sequencing
 - Restriction enzymes used to chop chromosomes into pieces
 - Pieces inserted into vectors, for replication in
 - E. coli: Bacterial Artificial Chromosomes (BACs), about 150 kb
 - Yeast: Yeast Artificial Chromosomes (YACs), 150 kb to 1.5 Mb
 - Restriction maps and common STSs used to identify overlapping BACs
 and YACs
 - Assembled into contiguous overlapping segments of DNA (contigs)
 - STSs used to locate contigs on chromosome
 - Public and Private Genomes
 - There were two draft versions of the human genome,
 - o public (Human Genome Project) and private (Celera)
 - Public database is more accessible (i.e. free)
 - Private used public data as well
 - Private effort likely 'motivated' public effort
 - Few differences between the initial versions
 - Full human genome sequence completed April 2003

Finishing the Genome Assembly

- Raw genomic information are submitted to NCBI through the HTG sequence division and sequences are categorized into 4 phases
 - 0,1,2 = unfinished; 3 = finished

- Genome is finished when 5-10 fold coverage (but much higher these days)
 - Coverage: average time that each base is covered by the reads
- Greatest difficulty is repetitive elements

Genome Annotation

- o the process by which the key features of the genome are described
- Includes:
 - Basic genome stats: Genome size, # chromosomes, GC content, etc.
 - Location of non-coding region
 - Location of protein-coding genes (introns/exons)
 - De novo or Ab-initio methods
 - Empirical
 - EST/mRNA based
 - Homology-based (ex: blast)
 - transcription start sites, promoters, RNAs, regulatory elements, repetitive elements, etc.
 - What are the functions of the genes and other genomic elements?

- Prokaryotic Genome Annotation

- First, look to non-coding regions
 - e.g., rRNAs, tRNAs common structure → tend to be easier to find
 - Remaining sequence can then be scanned for protein-coding genes
 - rRNA genes
 - can have many copies in the genome
 - well characterized that they are easy to distinguish
 - tRNA genes (often >50)
 - The complement of tRNA genes indicates codon preferences,
 which makes protein coding gene detection easier
- Detection of tRNA genes using tRNAscan
 - tRNA genes have highly conserved structure
 - Algorithm developed using alignment of many tRNA sequences

- identifying regions of high sequence and structure conservation
- Uses a decision tree see if that sequence is consistent with the tRNA pattern
 - at each step in the procedure the sequence has to pass a test
 - in tRNA, the paring sites are very conservative since they hold the structure together → invariant bases
 - Also has allowable insertion sites → variable length
 - tRNAscan looks for pre-defined feature → once if failed, it shifts the sequence and tries again
 - The question gets more specific as you move on
- Effective:
 - Predicts 97.5 % of tRNA genes
- Accurate:
 - one false positive/3 million bases
- very good for prokaryotes
- error rate too high for eukaryotes → modified algorithm for eukaryotes
- ⊙ Gene density is high with prokaryotes → about 85% 88% nucleotides are within coding regions
- # of genes varies (several usually thousands), yet minimal set of genes for absolute survival is usually from 30 – 150
- o Genes with related functions are often grouped within an operon
 - several genes with one shared promoter
 - one RNA transcript for all genes in operon (polycistronic RNA)
- Looking for Genes in Prokaryotic Genome
 - Relatively easy compared to eukaryotes
 - Lack of introns simplifies process of gene finding
 - Genomes are circular and there is typically one gene for each KB of genomic DNA
 - Matches to simple conserved promoter sequences

Features used to fine genes:

Open reading frames

- ORFs are stretches of DNA with no stop codons for a particular reading frame
- The <u>longer</u> the potential ORF, the <u>more likely</u> it is to really be a gene
- One stop codon is expected every 20-25 codons in random sequence
 - The likelihood of internal stop codons occurring in a random sequence increases with its length
 - ORFs longer than 60 codons have <5% chance of being a result of chance
- Defined by a start codon (typically AUG) and a stop codon (UAA,
 UAG, UGA)
 - There are exceptions to standard codons (e.g., E. coli uses
 GTG for 9% and TTG for 0.5% of start codons)

Sequence motifs/patterns indicative of genes

- Shine-Dalgarno sequence
 - o upstream of start codon
 - May find multiple in frame start sites
 - identifying a <u>ribosome binding site</u> can be an important indicator of likely start site
 - In bacteria, it is a sequence that is complementary to the
 3' end of the SSU rRNA (5'-AGGAGGU-3')

• Transcription initiation sequences

- Pribnow box (-10) sequence: TATAAT consensus
- o -35 sequence: TTGACA consensus

Codon Usage

- Protein-coding genes possess a distinct codon usage profile
 ("signature") that can distinguish them from non-coding DNA
- the frequency occurrences of different amino acid codons in genes and intergenic (non-coding) DNA are different
- Can be used as a gene-prediction feature
- Homology to known genes
 - Putative genes (predicted ORFs) can be compared to databases
 - BLAST against NCBI, etc.
 - Becomes more effective as databases get larger
- Pitfalls with Prokaryotes Gene Predictions
 - Difficult to distinguish whether <u>short ORFs</u> are genuine ORFs or are false positives
 - Partial genes
 - Sequencing errors?
 - Pseudogenes?
 - Frameshifts?
 - It is relatively easy to find genes in prokaryotic genomes, but can be much harder to assign them function
- Eukaryotic Gene Annotation
 - Differences between Euk and Prok
 - Scale of analysis is much larger
 - Gene structure causes eukaryotic gene detection to be much harder
 - Eukaryotic genes contain introns and exons due to splicing
 - <u>Length of the exons</u> is on average <u>smaller</u> than in prokaryotes making ORF recognition more difficult
 - Lower gene density
 - E.g., 98.5% of human genome is non-coding DNA → coding sequences are rarer and harder to detect
 - Abundance of repetitive sequences

 "junk DNA" → These can lead to errors in gene prediction and genome annotation

Introns and Exons

- Most protein coding introns follow GU-AG rule:
 - start of intron is 5'-GU-3'
 - end of intron is 5'-AG-3'
 - additional recognition sites within intron also available
- Length minimum is ~60 bp, no real upper bound
- Introns are less common in simple eukaryotes
- About 95% human genes contain introns
- Exons are shorter than that of prok, but both the length of introns and exons can vary

Alternative Splicing

- Majority of eukaryotic genes appear to be processed into a single mRNA
- However, over 50%-75% of human genes alternatively spliced
- Alternative splicing depends on a cell type and other regulatory factors,
 one gene can produce different mRNA to make different proteins

Repetitive Elements

- Many DNA regions contain repetitive sequences
 - can be removed from dataset to simplify gene finding
- Typically, large repetitive chunks are divided into:
 - tandemly repeated DNA (ex: 5' CTCTCTCT 3')

Satellite DNA

- long, simple sequences (up to 10mbp) with skewed nucleotide compositions
- repeating fragments of up to 2,000bp

Minisatellite DNA

- not as long as satellites (up to 20kbp)
- copies of sequences of up to 25bp

Microsatellite DNA

- shorter than minisatellites (up to 150bp)
- up to 100 copies of sequences of up to 5bp (typically 2-3)
- "TAGTAGTAGTAGTAGTAG..."
- Example: humans, 'CA' repeats
 - occur once every 10,000bp
 - make up 0.5% of human genome
- repeats that are interspersed throughout the genome (e.g., LINE and SINE elements)

Eukaryotic Gene Regulation

- Eukaryotic **promoters** more variable in composition and position
 - TATA box and <u>CCAAT box</u> RNAP recognition
- Eukaryotic genes are also regulated by **enhancers**
 - Enhancers may be <u>close</u> to OR <u>far</u> away (sometimes megabases) from the gene
 - o May be <u>upstream</u> or <u>downstream</u> or even within introns
 - This makes them hard to predict

Important Eukaryotic Genome Annotations

- cDNAs reverse transcribed from mRNAs
- ESTs expressed sequence tags (short segments of cDNAs)
- RNA-seq sequences the pool of cDNA extracted from a sample
 - Very valuable in understanding transcript
 - o can be used to identify intron/exon boundaries
 - o can be correlated with structure of other genes

Unit 9: Transcriptomics

Functional Genomics

- Includes Transcriptomics, proteomics, and other omics
- To understand the function of genomes, instead of individual gene only →
 multigene process
- Genome-wide expression analysis
 - Two major perspectives (& there are more):
 - mRNA transcript abundance transcriptomics
 - Microarrays and RNA-seq
 - protein abundance proteomics
 - Unlike the genome (static), transcriptomes and proteomes are dynamic
 - Diverse behavior in different cells/tissues/conditions
 - many more transcripts and proteins than genes
 - A lot more info than just looking at genome

- Transcriptomics

- o full set of mRNA transcripts expressed in a sample of interest → organism, cell, tissue, etc.
- o Reflects the biological state of the sample and pattern of gene regulation
 - Stage of development, growth, death; Cell cycle; Diseased vs. healthy;
 Response to therapy or stress
- By <u>comparing transcriptomes</u> you can detect changes in transcription levels for all genes in a genome

- Microarray analysis of gene expression

- o mRNA isolation → prepare cDNA from mRNA → Fluorescent labelling → hybridization to the assay
- One-colour technique
 - A single sample is <u>hybridized</u> to each microarray after it has been labeled with a <u>single fluorophore</u>
 - Allows for comparison across many microarrays

Two-colour technique

- A single sample is <u>hybridized</u> to each microarray after it has been labeled with a two fluorophores
- Produce different colours based on the reaction.

Determination of Expression Level

- Brightness is proportional to amount of cDNA bound to spot on chip
- <u>Colour</u> is due to <u>relative expression levels</u> between control and experimental
- Raw data are signal intensities

Data Processing

- Initial data processing:
 - Subtract <u>'background' signal</u> detected for each spot on the array (reflects noise)
 - Minimize noise variation in data by log-transforming raw signal intensities
- Normalization or standardization
 - Adjust data to fit a predefined distribution (e.g., gaussian distribution) that is suitable for statistical analysis
 - There is often a skewed observation of high intensity
 spots, yet in general we should expect normal distribution
- Expression data from <u>different samples</u> can be centered to have the same median level and transformed to have a similar distribution (between sample normalization by mean centering)
- Outlier removal

Data Normalization

- Normalized expression values for every gene calculated as ratio of experimental and control expression
 - Called the "fold change"

- E.g., Cy5 (red) labeled probe from healthy tissue used as a control for expression profile in a Cy3 (green) labeled probe from a tumor
- But these values are not symmetric around 1
 - To solve this: take **logarithms** of the ratios
 - +ve values will reflect experimental <u>up-expression</u> relative to control
 - -ve values will reflect experimental <u>down-expression</u> relative to control
 - This will make the distribution symmetric around 0
- Log is commonly used as a relative measure
 - Semi-quantitative data
 - Easy to distinguish presence/absence
 - Absolute levels beyond current methods
 - Relative levels are difficult but possible
 - Especially after normalization of data

- RNA-seq

- More modern solution for problems previously addressed by microarray
- applies NGS (next generation sequencing) to sequence all mRNAs (cDNAs)
 within a sample of interest
- NGS produces FASTQ Files, and then apply quality control removes poor data
- Each transcript is sequenced at a different coverage
- Coverage indicates gene "expression level" → high abundance gets more coverage
- Complexities and considerations
 - RNA-seq may be difficult <u>without a reference</u> transcriptome or genome to map reads to
 - How to handle multi-mapped reads (reads that align to multiple regions)?
 - How to distinguish splice isoforms? (a gene with multiple splice forms)

- When comparing between samples, it is often assumed that the total
 mRNA abundance is the same (yet often not true)
 - To solve this → use a negative control of known amount, and normalize to the amount of control, rather than overall sample

Normalization of gene expression levels

- Simply counting the number of reads that pile up over a gene will be inaccurate
 → longer gene will have more reads simply due to its length, even though its
 expression might be low → so, we have to normalize and account for the length
 of genes → ex: use number of reads per base
- o RPKM: reads per kilobase million
 - Account for length (kilobase) and size of data (per million reads mapped)
 - Count total # reads in sample and divide by 1 million
 - Gives you "per million scaling factor"
 - Count # reads that map to a gene and divide this by the per million scaling factor
 - Gives you reads per million (RPM)
 - Divide <u>RPM value</u> by <u>length of gene (in kb)</u>
 - Gives you RPKM
- TPM: number of transcripts per million reads → 10^6 * RPKM/(sum RPKM)

- Transcriptomic data analysis

- Two main quantitative analyses are performed:
 - Detection of differentially expressed genes (DEGs) between samples
 - T-test, from repeated experiments
 - If there are a lot of genes → apply Multiple hypothesis correction
 (Bonferroni adjustment and False-discovery rates (FDR))
 - Top DEG candidates will have logFCs (Fold changes) of high magnitude AND will be statistically significant
 - Often DEGs are ranked by p-value
 - Usually above a horizontal line on VOLCANO PLOT

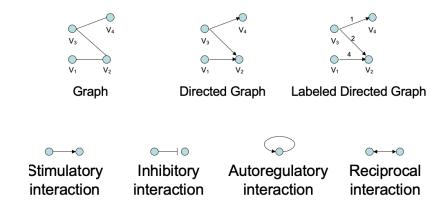
- Cluster analysis of co-expressed gene sets
 - Hierarchical Clustering, PCA (visualization)
 - <u>cluster genes</u> based on their expression profiles across samples and/or <u>cluster samples</u> based on their gene expression profiles
 - ie: what genes have <u>similar expressions</u>? This might suggest that they are functionally linked. Or another reason, what samples have similar expressions?

- Hierarchical Clustering

- Matrix of genes vs samples (derived from multiple microarray or RNA-seq experiments)
 - Samples may be different tissues, conditions, time points, etc.
 - Values can be FPKM, TPM, relative expression levels (e.g., fold changes)
- o Matrix can be clustered by rows or columns
- Values Colored as heat map (usually: red = up regulation; green = down regulation)
- Clustering of Experimental Data
 - A measure of similarity between expression pattern is needed
 - Can compute the correlation coefficient (-1.0 to 1.0) between any two expression profiles
 - Use this as a <u>distance/similarity measure</u> between genes, with 1.0 being an exact match and -1.0 being negatively correlated
 - Apply UPGMA to cluster data, and generate a similarity tree for genes

Unit 10: Network and System Biology

System Biology


- Extremely difficult to define → Meant many things over the last 50 years
- Institute for Systems Biology:
 - Systems biology is the study of an organism, viewed as an integrated and interacting network of genes, proteins and biochemical reactions which give rise to life.
- Instead of analyzing individual components or aspects of the organism, such as sugar metabolism or a cell nucleus, systems biologists focus on all the components and the interactions among them, all as part of one system.

- Network

- A biological system is its components and their interactions
- This information can be represented as a network
- By examining a biological system as a network of interacting components, we can view the big picture
- o 2 elements in a network:
 - Node: Gene, Protein, Neuron, Species
 - Edge: Physical interaction; Regulatory interaction; Functional interaction;
 Electrical signaling
- Biological networks include Protein Interaction Networks, Gene Regulatory Networks, Metabolic Networks (ex: KEGG Database), Cell, Organisms, Ecosystems

Important Terminologies

- Each edge is specified by a pair of vertices (nodes)
- o In a directed graph, the edges are ordered pairs of vertices
- o In a labeled graph, there are <u>values</u> associated with <u>each edge</u>
- o An undirected unlabeled graph specifies connectivity without orientation

Stimulatory interaction, inhibitory interaction, autoregulatory interaction, reciprocal interaction

- Common Network Motifs in Biological Networks

- o Fork
 - Single-input motif, one incoming signal, <u>multiple</u>
 <u>outputs</u> (can amplify signal / cascade)
 - Effective for activations of large sets of genes from a single impulse

Scatter

- Multiple-input motif
- Can function as an OR operation
- Both downstream impulses are <u>activated by either</u> <u>upstream element</u>

One-two punch

- Feed-forward loop
- If both paths are needed, it operates as an AND
- Can filter out 'noisy' stimuli

Structure vs. Dynamics

- Modeling of a biological network requires knowledge of its:
- O Structure this is static

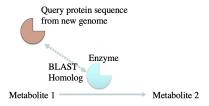
- Can be retrieved from databases
 - E.g., Known structure of human metabolism

Can be inferred

- E.g., construct gene regulatory network by connecting
 coexpressed genes (Pearson correlation > K the threshold)
- Connect two proteins if there is significant evidence of a physical interaction
- Extracted from **published literature** (text-mining)

Dynamics

- How does the network change over time, in response to various cell types, pressures, perturbations, etc.
- Requires experimental data
- Enzyme kinetics, binding coefficients, concentrations, etc.


- The String Database

- Infer network structure
- Combines eight types of evidence to support and interaction between two proteins:
 - Gene Neighborhood → Interacting genes tend to be clustered in the genomes
 - Gene fusion → Fusions indicate that those genes are interacting in some
 way
 - Co-occurrence → Genes that appear together across many species (it might suggest that one requires the other, or some pathways require both)
 - **Co-expression** → Genes expressing together
 - Experiments → Usually high throughput many proteins against many other proteins → most credible source
 - Textmining → use programs that detects word associations across big databases

- **Database** → existing information about the structure
- Homology → similar proteins might interact with each other (usually)
- Connects proteins based on total score (specified threshold)
- Additional information:
 - Can also add protein functions to the network (Gene ontology (GO)
 functions) → hubs
 - Map the functional annotation by, for example, colouring
 - Add linkages/hubs AND subcellular localization data
 - Results in a more realistic computational model of the cell

Hubs

- Proteins that participate in the same functional module (e.g., complex) are organized into hubs
- o many proteins all interacting with each other or with a central protein
- o Two types:
 - Party Hub
 - Members of hubs interact with each other most of the time
 - Date Hub
 - Interact with <u>different partners</u> at different times and locations
- O Analyze networks to identify nodes → important proteins with many connections → hub proteins
- Inferring Pathways from Genomes
 - By using Homology
 - Define known pathways with reference enzymes for each reaction
 - Use homology (e.g., BLAST) to detect presence/absence of homologous
 protein for species of interest

