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Overview of Key Python Functions

random

random.sample(listof values, number of values)

numpy , import as np
allows us to work with vectors and arrays
Key Functions:

np.loadtxt("file_name", skiprows=n, usecols(n,m)/usecols=n, 
max_rows=n)

Allow to load text file into the program and generate data array.
skiprows allow us to pick the row number for import
usecols allow us to pick the column number for import
max_rows allow us to import a certain number of rows

np.array(L)
convert a list L into array, which allows you to manipulate all the values in the
array at one without using loops

np.arange(start,end,number of data)
np.random.seed(n)

fix the result from one trial
np.random.randomn(number of data, sets of data)

randomly generated some normally distributed data
parameters = np.polyfit(x_values,y_values,degree)

for a nth degree model, you will need to set (n+1) parameters
np.linespace(start,end,number of data points)
np.mean(L)
np.var(L, ddof=) , where set ddof=1 for sample and ddof=0 for population
np.std(L, ddof=) , where set ddof=1 for sample and ddof=0 for population
np.median(L)

np.sin(n)
np.cos(n)
np.pi

matplotlib.pyplot , import as plt
allows us to plot and visualize data
Object oriented approach:

fig, ax = plt.subplots(figsize=(x,y))
ax.set_xlim(low,high)
ax.set_ylim(low,high)
ax.set_xlabel("x axis name")



ax.set_xlabel("x axis name")
ax.set_ylabel("y axis name")
ax.plot(x,y,marker=".",markerfacecolor='blue',linestyle="-
",color="red", linewidth=,markersize=,label=)

plot red line through blue dots -> line chart
marker size determines the size of points

ax.errorbar(x,y,yerr=,xerr=,fmt="o",color=,ecolor=,elinedith=,capsize=,\

lolims=True/False,uplims,xlolims=,xuplims=,label=)
uplims sets the upper limit for y error (so there is only y errors going down)

ax.fill_between(x,yupper,ylower,alpha=0.3)
ax.legend(loc="best")
ax.set_title("title name")

Using plt to plot directly:
plt.axis("axis name")

for one axis plot only (such as a pie chart
plt.title("title name")
plt.xlabel("x axis name")
plt.ylabel("x axis name")
plt.legend(labels=,title=,loc="best")

generate a legend of the plt with labels and tile at the best location
plt.show()

Pie Chart:
plt.pie(data,explode=,labels=list/None,colors=,autopct='%1.xf%%',shadow=True/False,startangle=)

plot a pie chart
explot allows to offset any chosen slice
start the pie at any angle using startangle
label percentage to certain decimal points x using autopct

Bar Chart:
plt.bar(barclass,barfrequency,color="colour",width=,edgecolor="colour")
plt.barh(barclass,barfrequency,color="colour",height=,edgecolor="colour")

create a horizontal bar plot
Histogram:

ax.hist(data,bins=number,edgecolor="colour",color="colour",label=listof

 colours)
Frequency histogram:

hist,edges = np.histogram(data,edge values of bins)
relfreq = hist/float(hist.sum())
plt.bar(bins[:-1], relfreq, width=8, align='center', 
color='green')
or, just use density=True  in the ax.hist  function

pandas , import as pd
allows us to work with DataFrames in Python (think of data manipulation through
spreadsheets)
Key Functions:

pd.DataFrame(listof(listof data),columns=(listof col))
allows us to present the data in table with column names of columns

scipy

allows us to access essential scientific algorithms, including ones for basic statistics
from scipy import stats

Key Functions:
stats.mode(L)

print out the mode as well as its frequency



print out the mode as well as its frequency
the mode number will be stats.mode(L)[0][0][0]

Uniform Distribution:
data.stats.pmf(list of x)

generate the probability for each specific x-value in list of x
Binomial Distribution:

stats.binom.pmf(x,n,p) , where p is the probability of success
stats.binom.cdf(x,n,p) , this includes the edge points
stats.binom.mean(n,p)
stats.binom.var(n,p)
stats.binom.std(n,p)

Poisson Distribution:
stats.poisson.pmf(x,mu)
stats.poisson.cdf(x,mu) , this includes the edge points
stats.poisson.mean(mu)
stats.poisson.var(mu)
stats.poisson.std(mu)

Continuous Uniform:
stats.uniform.ppf(percent) : this is the percent point function and

returns a standard deviation multiplier for what value the % occurs at
stats.uniform.pdf(value)

Gaussian:
stats.norm.ppf(percent) : this returns the z-score for the percent

stats.norm.pdf(z-score)
or stats.norm.pdf(value, loc=mu, scale=sigma)

stats.norm.cdf(z-score)
or stats.norm.cdf(value, loc=mu, scale=sigma)

stats.norm.sf(z-score)
this is 1-cdf()

Maxwell:
stats.maxwell.ppf(percent)
stats.maxwell.pdf(value)

Four Moments:
1st mean: np.mean(data)
2nd variance: np.var(data)
3rd skew: stats.skew(data)
4th kurtosis: stats.kurtosis(L)+3

sklearn.metrics

In this course, we use it to calculate the  value for the regression model
from sklearn.metrics import r2_score , then use:

r2_score(actual_y, modelled_y)

Other Imports
Statsmodels : integrates with NumPy, SciPy and Pandas to explore data, estimate

statistical models and perform statistical tests
Seaborn : allows us to visualize statistical data (distributions and gradient maps for

example)
Patsy : allows us to describe statistical models (ie. linear models)

!2

Hypothesis Tests from scipy.stats

Always use tests_statistics, p_values = scipy.stats.testname()



Always use tests_statistics, p_values = scipy.stats.testname()

Sample Measure Hypothesis
Test

Purpose &
Conditions Python Function

Parametric
One
Sample
Test

Mean One Sample
t-Test

Purpose:
Check
observed
mean value
of normally
distributed
data against
theoretical
reference
value
Conditions:

Sample size
is small,
variance
unknown

scipy.stats.ttest_1samp(a,
popmean, axis=0,
alternative='two-sided')

Parametric
One
Sample
Test

Mean Z-Test

Purpose:
Check
observed
mean value
of normally
distributed
data against
theoretical
reference
value
Conditions:
Sample size
is large,
variance
known

N/A

Parametric
Two
Sample
Test

Correlation
Pearson

Correlation
Coefficient

Purpose:
Measure
linear
correlation
between
two sets of
data

N/A

Parametric
Two
Sample
Test

Mean Two Group
t-Test

Purpose:
Compare
two
observed
means from
independent
samples
Conditions:
Sample size
is small,
variance
unknown

scipy.stats.ttest_ind(group1,
group2)

Parametric
Two
Sample
Test

Mean Paired t-Test

Purpose:
Compare
two
observed
means from
paired,
dependent
samples
Conditions:
Sample size
is small,
variance
unknown

scipy.stats.ttest_rel(group1,group2)

Parametric
Two
Sample
Test

Mean Two Sample
Z-Test

Purpose:
Compare
two
observed
means from
independent
samples
Conditions:
Sample size

N/A



is large,
variance
known

Non-
Parametric

One
Sample
Test

Mean
One Sample

Wilcoxon's
Test

Purpose:
Check
observed
mean value
of normally
distributed
data against
theoretical
reference
value

scipy.stats.wilcoxon(list of each
data - checkValue)

Non-
Parametric

One
Sample
Test

Randomness Runs Test
Purpose:
Determine
how random
your data is

N/A

Non-
Parametric

One/Two
Sample
Test

Distribution Kolmogorov-
Smirnov Test

Purpose:
Compare an
observed
distribution
to a
reference
distribution
Conditions:
Data is
continuous

N/A

Non-
Parametric

One/Two
Sample
Test

Distribution Chi Squared
Test

Purpose:
Compare an
observed
distribution
to a
reference
distribution
Conditions:
Data is
binned and
represents
frequencies

scipy.stats.chisquare(data)

Non-
Parametric

Two
Sample
Test

Correlation
Spearman

Rank
Correlation

Purpose:
Test the
association
between
two samples

N/A

Non-
Parametric

Two
Sample
Test

Mean Mann-
Whitney Test

Purpose:
Compare
two
observed
means from
independent
samples

scipy.stats.mannwhitneyu(group1,
group2)

Non-
Parametric

Two
Sample
Test

Mean Wilcoxon's
Test

Purpose:
Compare
two
observed
means from
paired
samples

N/A

In addition, we may also have One-Way ANOVA, where we look at whether there are
differences between multiple independent groups when there is only one factor afftecting
them. We can use scipy.stats.f_oneway(group1, group2, group3) .

Introduction to Data Analysis

Data Analysis: process of collecting, modeling, and analyzing data to extract insights and
make predictions based on interpreted results

Methods of data analysis require the application of mathematical statistics



Methods of data analysis require the application of mathematical statistics

Statistics: based on observations and how we infer/interpret such results

Requires us to understand statistical tests
Knowledge of probability and uncertainty is required to understand the significance of
these statistical tests

Probability: the language of uncertainty that allows us to describe (numerically) how likely an
event is to occur or that a proposition is true

Prior to understanding probability, we have to understand how data is collected and
how it is presented and described

Approaches to Data Analysis
1. Experimental Design: formulate hypothesis, design experiment and sampling routine
2. Data Collection: optimize collection method and carry out data collection
3. Descriptive Statistics: generate statistics to summarize/visualize your data
4. Inferential Statistics: discuss patterns/differences/characteristics about your data
5. Estimation: estimate patterns in population from your sample
6. Hypothesis Testing: apply appropriate tests to determine any causative effects or

differences between groups; find significance

Sample and Population
When discussing statistics, we must introduce the concept of sampling: when you collect a
sample (set of data points) from a population (large body of measurements)

The goal is to predict the behaviour of the population by analyzing data from a
representative sample

A variable is a measurable characteristic that changes, and you can get data points from
that variable

If you can measure 1 variable from your sample, you have univariate data
If you can measure 2 variables from your sample (temperature and location for

example), you have bivariate data
If you measure 3+ variables from your sample, you have multivariate data

In sample we work with statistics, while in poplutation we work with parameters

Qualitative Data

Types of Catagorical Data
Qualitative data is commonly known as categorical data

Categorical data can be further broken down into:

Boolean Data: only two possible values
Nominal Data: more than two categories are required
Ordinal Data: categories must be ordered and have logical sequence

Commonly presented as a statistical table

Frequency and Relative Frequency
Frequency represents the number of measurements in each category from a total of !



Frequency represents the number of measurements in each category from a total of !

Relative Frequency is the proportion of measurements in each category

Percentage: gives us the percentage of measurements in each category

Key Points:

Sum of all frequencies will be !
Sum of all relative frequencies will be 1
Sum of all percentages will be 100%
Always have a category for outliers that you can filter out or include
Ensure your categories are created such that:

1 measurement falls into 1 category only
1 measurement must fall into any one of your categories (including the “outlier”) one

Pie Charts
useful for visualizing frequency distributions of categories

Considerations
Overlap? Use a legend
Too many small slices? Use another type of graph (bar graph)

Bar Chart

commonly used to display categorical (or quantitative) data

Considerations:

Label all axes,always!
Add a title!
Present values in table or on the graph itself

A bar chart does not always have to be vertical

Can also use a horizontal bar chart

To represent multiple data sets, you may use a 3D bar chart

Creation of Figures
We can approach coding in one of two main ways: functional vs. object-oriented

Functional: use built in functions to create the required figure/axes automatically
Object-Oriented: step-by-step plotting from generating the figure, axes and plotting

As a physicists, always try to use object-oriented
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Qunantitative Data

Types of Quantitative Data
Quantitative data is numerical data made up of measurements from discrete or continuous
variables



Describing numerical data can take place in two critical ways:

Graphical Analysis: help us describe the basic shape of data distributions
Numerical Analysis: generate statistics from the sample data

Considerations when choosing graphical/numerical or both types of analysis:

If you have a lot of numerical data points, a graph will help show spread
Too many plots will cause confusion; we need a way to summarize the sample data
For key summaries, use graphs to show key trends and distributions
For general statistics and numerical measures, keep numbers in the discussion

Different Charts
Pie Chart: useful for displaying breakdowns of numerical ranges

Bar Chart: also useful for frequency within numerical ranges

Line Chart: useful for trends across time series or along an axis

Histograms and Relative Frequency Histograms
Histograms: bin data into numerical categories Relative Frequency Histograms: helps
determine distribution across data set

Interpreting Graphs
Distributions of data are determined by their shape in a graph

Look at symmetry, skewness, uni/bi/multimodal distributions

For unimodal distributions, symmetry and skew are easy to spot:

positive/right skew: tail to the right, mean > median > mode
symmetrical distribution: no tail, mean = median = mode
negative/left skew: tail to the right, mean < median < mode

Measures of Centre
Mean: From a set of ! measurements, this average is the sum of all measurements divided
by n.

Median: From ! measurements, median " is the value of # in the middle after all values are
sorted from smallest to largest

Mode: Most frequently occurring value of # or category

Measures of Spread
Range: Difference between smallest and largest measurements, given as $

Deviation: How far away a singular measurement is away from the mean

use  for population mean and  for sample mean

Sample Variance ( ):
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Also population variance ( )
use sum of squares
For population, use % instead of(N−1) and  and 

Standard Deviation:

The positive square root of variance; measures the amount of variation
high values: data is far from the mean and the spread is wide
low values: data is close to the mean and the spread is narrow

Sample vs. Population

As scientists, usually sample since we are always doing experiments or collecting data
based on a subset of the population to make predictions about the population
Be sure to check your code and syntax to ensure the proper functions or equations are
being used!

Measures of Relative Standing
z-score: distance between observation and mean based on standard deviation

95% of observations lie within 2 standard deviations from the mean (|z-score| < 2)
99.7% of observations lie within 3 standard deviations from the mean (|z-score| < 3)
Helps us determine whether data is considered an outlier (>2,>3)

percentile: when n meansurements are ordered based on magnitude, the pth percentile is
the value of x that is greater than p% of the measurements and less than (100-p)%

Q1 = 25th percentile = lower quartile
Q2 = 50th percentile = median
Q3 = 75th percentile = upper quartile
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Probability

Origins of Probability

Real life is unpredictable in many cases, due to:

Incomplete Knowledge
Large Numbers
Sensitivity to Initial Conditions
Open Systems

Probability can be defined in one of two ways:

The frequency with which unpredictable events occur – “Frequentist Approach”
The degree of belief that some hypothesis is correct – “Bayesian Approach”

This create two branches of probability that we will discuss



This create two branches of probability that we will discuss

Events and Sample Space
We collect data through an experiment (flipping a coin)

The outcome is called a simple event – heads, tails are the possible outcomes
The set of possible outcomes is called the sample space & = {heads, tails} of size 2,
where you list the simple events
An event is a collection of simple events - A is an event where you roll a die and get a
value > 3 (there is more than 1 possible answer to get a value > 3)

If you have experiments with stages (ie. 3 coin tosses), you can create a tree diagram to
help visualize the sample space

Probability of Event A

Where  is the frequency of event A, and N is the total number of events

mn Counting Rules
There are m possible outcomes for the 1st event, and n possible outcomes for the 2nd
event, then the total number of possible values are given by mn

Extended mn Rule: For i events, just multiply all number of possible outcomes

When to use: When trying to figure out how many outcomes are possible without worrying
about order or groups

Permutations and Combinations
refer to ways in which objects from a sample space can be selected to form subsets

Permutations
Use when order matters

Combinations

When order of group does not matter

Event Relations
Union: 

either events A or B can occur

Union for Disjoint / Mutually Exclusive Events
either A or B can occur, but no overlap

Intersection: 

Both events A and B can occur
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Complement: 

When A does not occur

Conditional Probabilities
the likelihood of an event occurring based on the occurrence of a previous event

Probability of A given B is 
It is the fraction of P(B) that intersects with A

The second formula is known as Bayes' Rule

Events are independent if and only if:

and

Otherwise, they are considered dependent.
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Discrete and Continuous Probability Distributions

Random Varaibles
We call ' a random variable to represent any variable that varies or changes depending
on the outcome of the experiment being measured

If the possible outcomes are listed out using whole numbers, we have a discrete random
variable

Finite: fixed number of possible values
Countably Infinite: possible values can be listed out, but not easily (as there are
infinitely many)

If the possible outcomes can be described using an interval of real numbers, we have a
continuous random variable

Uncountably Infinite: too many possible values to list or count, but all are measured
with high precision

Baysian vs. Frequntists Views on Probability
Frequentist:

Probabilities are interpreted as long-run frequencies
goal is to create procedures with frequency guarantees

Parameters are fixed constants and probability statements are about procedures

Bayesian:

Probabilities are interpreted as subjective degrees of belief
goal is to state and analyze those beliefs

Parameters are random variables and probability statements are about those



Parameters are random variables and probability statements are about those
parameters
Here, we choose a probability density (the “prior” distribution) that expresses our
beliefs about a parameter before we see any data

Then we choose a statistical model that reflects our beliefs about the data given
the prior
After observing our data, we update our beliefs and calculate the posterior
distribution

Probability Distributions

A probability distribution is a mathematical function that gives the probabilities of
occurrence of different possible outcomes of an experiment

We use ((#) for each value of # for random variable X

Types of Probability Distribution

Probability Mass Function (PMF): gives the probability that a discrete random variable
is exactly equal to some value
Probability Density Function (PDF): gives the probability that a continuous random
variable falls within a particular range of values (versus taking on one exact value)

Given by the area under the density function but above the horizontal axis
Common characteristics:

: individual probability much be between 0 and 1
individual probability is 0 for continous probability distributions

: all probabilities must add up to 1
the area must be 1 for continous probability distributions

Comulative distribution functions: provide the probability that X takes on a value less
than or equal to x

Discrete Probability Distributions
Uniform Probability Distribution

distribution where PMF is a constant value; every value has equal chance --> flat curve

Binomial Probability Distribution

distribution where you have ! identical trials, each with only 1 of 2 possible outcomes (p,
success or q = 1-p, failure)

Values of p and q are consistent from trial to trial; trials are independent

Poisson Probability Dirstribution

Distribution for events that occur an average  number of times over a certain period of time
or space

Events must occur randomly and independently of one another

Continuous Probability Distributions
Uniform, Continuous Probability Distribution

For c is a constant:

0 ≤ +(/) ≤ 1

∑ +(/) = 1

+(/) = 1
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Exponential Probability Distributions

Normal/Gaussian Probability Distribution

Naturally occuring distribution affected by population mean  and standar deviation 

 locates the centre of the distribution
Distribution must be symmetric around the mean

 determines the shape of the distribution (height, width of curves)
large value increases spread and reduce height

Stadarided normal distribution means that the normal distribution has  and 

Any normal distribution can be standardized by converting its values into z-scores and
plot the z-score distribution.
They will tell us how many standard deviations from the mean each value lies
This allows us to calculate the probability of certain values occurring and to compare
different data set

If...

X < , z<0
X > , z>0
X = , z=0
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Summarizing Quantities

Coefficient of Variation (CV, RSD)
Relative standard deviation

It is a dimensionless ratio of the standard deviation and the mean
Useful in expressing the precision and repeatability of experiments

Percentiles
Indicate value below which a given % of observations fall

integrate the area under probability function to find the probability of values falling in

between a and b

Expeted Values
The generalization of a weighed average of a random variable

We say the the exptected value of X is , , or 

For PMF:
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For PDF:

We can also calculate variance:

Moment Generating Functions (MGF)
Uniquely determines the distribution of a random variable

Four Moments of a Probability Distribution

1st Raw Moment: Mean
2nd Central Moment: Variance
3rd Standardized Moment: Skew

Level of asymmetry that deviates from a normal distribution
The direction of skew comes from whichever tail is longer
Positive skew means longer tail on the right  right-skewed

4th Standardized Moment: Kurtosis
The peakedness of the distribution

The peakedness comes from the distribution of tails which affects how sharp a
peak is

Leptokurtic: K>0, very sharp peak
Normal: K=0
Platykurtic: K<0, very flat peak

Central Limit Theorem
When selecting a random sample from a population, the numerical measures from the
sample are called statistics (ie. mean, median, etc.)

The sampling distribution of a statistic is the probability distribution for the possible
values of that statistics when random samples of size ! are repeatedly drawn from the
population

The Central Limit Theorem states that in general conditions, the sums and means of
random samples of measurements from a population tend to have an approximately
normal distribution

We can say that the sampling distribution of the mean is:

If the population has a normal distribution, the sampling distribution of  will be exactly
normally distributed regarless of n
If the population distribution is non-normal, the sampling distribution of  will be
approximately normal when n is large ( )

Increasing N reduces sampling error, and allows us to make a good estimate of the
population mean

can use it to predict parameters of a population like standard deviation and mean

Normal (Gaussian) Distribution in Real Life
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A “normal” distribution does take place under “normal” circumstances, especially after
applying CLT

Examples of normal distributions in real life

Height of the population
Birth weight of babies
Shoe sizes
Test scores (usually)
Blood pressure for men vs. women
Rolling a dice
Coin toss (probability of heads for all tosses)
Random motion of particles
Concentration of a specific ion within the human body
Measurement error from experiments

Maxwell-Boltzmann Probability Distribution

describes the statistical distribution of particles in a system among different energy levels

It is officially considered a “chi distribution” that takes in to account a set of
independent random variables, each following a standard normal distribution
Since the MB distribution is defined and used for describing particle speeds in idealized
gases, there are three independent random variables (x, y, z components to velocity)
and thus three degrees of freedom from Euclidean 3D space

Log-Gaussian

Sometimes, if a distribution does not look Gaussian, we can take the logarithm to form a
Log-Gaussian distribution

Error Analysis

Importance of Error Analysis
No matter what measurement is taken, there is room for error, no matter how small

Evaluating this error and uncertainty is called error analysis
Every measurement taken must also include an estimate of the level of confidence
associated with the value presented

Allows others to judge the quality of the experiment
Allows for meaningful comparisons with other similar experiments / values or a
theoretical prediction

Prior to experimental design, we have to understand how to report measurements and
uncertainty in measurements

Allows us to check results and decide if a scientific hypothesis is confirmed or
refuted due to the significance of your results

Types of Error
Random Error

statistical fluctuations (in either direction) in measured data due to limitations in the precision
of the measurement device

Examples:
enviromental factors
instrumentation limitations



instrumentation limitations
physical variations

Fix: Reduce contribution of error by averaging over large sample sizes

Systematic Error

reproducible inaccuracies (in the same direction) that causes bias in measured data

Examples:
unclear definition of measurement
missed parameters or factor in meansurement

Fix: None; they are difficult to detect and cannot be fixed by increasing sample size

Human Error

errors related to poor technique and understanding

Not considered an error; must be fixed or corrected prior to moving forward

Accuracy vs. Precision in Measurements
Any meansurement is reported as 

Accuracy

how close your measurement is to the true value

Commonly reported as relative error

Precision

how consistent your measurements are; reliability / reproducibility of your result

Commonly reported as relative (fractional) uncertainty
We call  the absolute uncertainty of a measurement x

Error Propagation
The exact formula for propagation of error for a function f(x,y,z) relates each variable and
their standard deviation

Addition, subtraction and logarithmic equaions lead to an absolute standard deviation
where we use 
Multiplication, division, and exponential equations lead to relative standard deviations,
where we use 

Type Example Function Standard Deviation ( )

Addition or Substraction

Multiplication or Division
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Exponential

Logarithmic

Standard Error
The population standard deviation ) shows the distribution within a sample of what we are
measuring

We call the standard deviation of a statistic the “standard error of the estimator”

The term “estimator” is used because the statistic is used to infer details about the
population’s parameter
In other words, how precise the estimator is

In many cases, we look at the averaged value (mean)

If we want to look at the precision of the mean, we can calculate the standard
deviation of the mean, which is traditionally called the standard error of the sample

standard deviation of the sample devided by the square root of the sample size
So the standard error, by definition, is the standard deviation of  which is simply
the square root of the variance

Errors Bars
Error bars represent the variability of data and uncertainty in a reported measurement

Often represent 1 standard deviation of uncertainty, 1 standard error or a particular
confidence interval
When reporting, make sure you state what kind of error you have used for your error
bars!
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Experimental Design and Hypothesis Testing

Statistical Inference and Types of Tests
Statistical Inference:

The process through which inferences (predictions) about a population are made based
on statistics calculated from a sample of data from the population

Statistics are from the sample, parameters for from the population

This means that there are two approaches to statistical inference:

Hypothesis Testing: making a decision about the value of a parameter based on a
preconceived idea about its value

we have to first come up with a hypothesis, a value for the hypothesis and its null,
then reject or accept the null to make conclusions

Parameter Estimation: estimating or predicting the value of a parameter
we have to look at estimators as well as the maximum likelihood of getting
certain values



Experimental Design
The process by which a hypothesis is investigated

Involves deciding which factor is the independent variable (to be manipulated) and
which one is the dependent variable.

Note that the independent variable is called a factor and its manipulations are
referred to as factor levels

We adjust the factor to see its effects on the dependent variable to determine where
there is a causal relationship
We apply statistical test to reject / accept the null hypothesis

Steps for proper experimental design

1. Understand and consider all variables and their relationships to one another
2. Present a testable hypothesis specific to what you are looking for
3. Design an experiment or sampling routine to collect data and manipulate the

independent variable
4. Apply appropriate statistical tests
5. Analyze results for significance and check for optimizations. Repeat 3-5 if required.
6. Summarize, present and discuss your findings and conclusions

Controls
Controls help reduce or isolate the effect of external factors on your study

If you are only interested in your independent variable, controls help prevent your data
from being affected by other factors

Types of Control

Experimental Control: controlling the environment around the experiment (temperature,
humidity, etc.)
Procedural Control: run the experiment on a negative control group and experimental
group to make sure any factors arising from the procedure itself can be eliminated

Placebo Effect: when the control group exhibits effects when there should be none
Temporal Control: observing two groups prior to manipulating factors

Good for experiments that run for long periods of time
Statistical Control: Instead of adjusting the environment, we record the environment’s
settings and analyze their effect afterwards

Null Hypothesis
Hypothesis Testing: the act of testing an assumption regarding a population’s parameter

Start off with the formation of a hypothesis H1
Each main hypothesis has a contradictory, null hypothesis Ho

Our goal is to reject or accept the null hypothesis because it is easier to do so than
the alternative hypothesis H1
Why?

Null is testing a mean value ?, while alternative is testing that ?, which
means that the population parameter can be smaller, greater, or different
Easier to disprove a mean that is not one value than is many values

Rejecting the null hypothesis concludes that our hypothesis is likely true.

One vs. Two Tailed Test of Hypothesis
One Tailed Test

Test to see if the parameter is significantly greater OR less than X, but not both

1 = 1 ≠



Hypothesis:  or 

Two Tailed Test

Test to see if the parameter is significantly greater or less than X, in either direction
Hypothesis: 

Approach to Hypothesis Testing
1. Create a null hypothesis *0 and assign it a value
2. Create a hypothesis *1 which is your alternative hypothesis, and determine whether it

requires one- or two-tailed hypothesis testing
3. Determine a test statistic and its P-value
4. Determine rejection regions and test P-value
5. Make conclusions from your results on significance and confidence levels

Test Statistics
A single number calculated from the sample data that we can use for our hypothesis
test

We assign the null hypothesis the value of the test statistic, 
The goal is to test this mean value  against the population mean , which we get from
our null hypothesis

we can use a z-score:

This will give us how many standard deivation away from the population mean that 
 is, and allow us to find the p-value of 

We can construct rejection regions based on a chosen  level of significance which
correlates to a (1- ) level of condifence

usually we use confidence levels of 95% and  is used for critical values for two
tailed tests

P-Values
The P-value is the probability of seeing a select set of data if the null hypothesis is true

With the z-score of the test statistic and the desired confidence inverval, we can
easily find the probability of obtaining certain z-scores in our distribution

For a given probability density function of p(x), to test the null hypothesis, the p-value
for X>x is:

If the p-value is 0.05 or lower for a confidence level of 95%, it means that we can reject
his null hypothesis and say with the same level of confidence that the hypothesis is true
Rejecting the null hypothesis does not prove that the hypothesis is true, just gives us a
high likelihood that it is so

Acceptable Errors
We know that in reality, our hypothesis can either be true or false

But with hypothesis testing and rejection of the null hypothesis, our statements can
only go so far

The worst thing that can happen is if you make a mistake and reject/accept the null
hypothesis when it should have been the opposite. There are two ways this can happen,
each outlining the type of error made

Type I Error
when null hypothesis is really true, but the statistical tests lead you to believe it
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when null hypothesis is really true, but the statistical tests lead you to believe it
is false

This is called a false positive and very damaging to the conclusion
Type II Error

when null hypothesis is really false, but the statistical tests lead you to believe
the null hypothesis is true

This is called a false negative. It is less damaging, because your
hypothesis lives to see another day and you can run the tests again

Experimental Design and Hypothesis Testing

Estimation Theory
Branch of statistics that deals with estimating values of parameters based on measured
data with a random component

Estimator: an attempt to approximate unknown parameters using measurements

General methods to approxiamte those values:

Probalistic Approach: assume the measured data is random with a probability
distribution based off of key parameters

This is the focus of this course
Set-Membership Approach: assume the measured data vector belongs to a set that
depends on a parameter vector

Why estimation theory?

Allow us to take our sample of measured data as an input to produce an estimate of
parameters with some level of confidence
Allow us to infer the value of unknown parameters in a statistical model
Help to understand the behaviour of population with the help of a small sample

Types of Estimators
Estimator: rule for calculating an estimate of a given parameter based on observed
data

Estimator: "rule"; Estimand: "quantity of interest; Estimate: "result"
Maximum Likelihood Estimator (MLE): estimate parameter of an assumed
probability distribution given some observed data

Process of maximizing a likelihood function for which the observed data is most
probable for the statistical model chosen

Bayes Estimator: minimizes the posterior expected value of a loss function
Posterior distribution consists of prior distribution and observed data
Loss function (usually quadratic) is the loss incurred in estimating a parameter's
value

Method of Least Squares: typical in regression analysis; minimizes sum of squares of
residuals to get the best fit for a set of data points
Markov Chain Monte Carlo (MCMC): class of algorithms to sample from a probability
distribution; algorithm runs until Markov chain reaches equilibrium

Maximum Likelihood Estimation (MLE)
A method that determines values for the parameters of a statistical model (ie. linear)

Answers: which are the best parameters for my model?



Ex: for a linear model: y=ax+b, where a is the parameter in the model, given some
postulated claim about b (which can be considered as noise / the value of y when x =
0)

No matter which model is chosen, we use + to be a vector of all parameters

Ex: for a linear model: 
Our goal with MLE is to select parameters  that make observed data most likely (ie:
maxmimize the likelihood)
We must make the assumption that the data we use to estimate the parameters will be n
independent and identically distribution (IID) samples

Likelihood
We have assumed our data are IID so they must all share the same PMF (discrete) or PDF
(continuous)

We can use , a probability distribution function, to refer to this shared
distribtuion

Likelihood means the joint (overall) probability of the data (discrete) or the joint probability
density of the data (continuous)

Since we have assumed each data point is independent, the likelihood of all our data is
the product of the likelihood of each data point

With MLE, we need to choose values of  that maximize 

We can use the notation  to represent the best choice of values for our parameters
the argmax of a function is the value of the domain at which the function is
maximized

We can then take the log on both side since log is monotonic, which gives us:

Where to find , we can the the partial derivative of the 

Example: for a normal distribution, we could have 

Linear Regression

linear approach for modeling the relationship between dependent and independent
variables; commonly used for predictive analysis and modeling
In most cases, we want to use linear regression to search for a best-fit line to a given
(observed) data set 

We are interested in the parameters k and d that help to minimize the sum of
squared residuals

the residuales ( ) is the differences between observed and perdicted values

Since linear regression is solved to minimize the square of sum of residuals, it is
commonly referred to as Ordinary Least-Squares (OLS) regression
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commonly referred to as Ordinary Least-Squares (OLS) regression
Note that for linear and OLS regression, we assume all variability to lie in the
residuals

Coefficient of Determination ( )

We don’t just have to have a linear model; we can have higher-order regressions based
on what degree of function we are trying to fit (quadratic, exponential, etc)
For each model, we can determine the coefficient of determination ( )

It is a statistical measure in a regression model that determines the proportion of
variance in the dependent varaible, that is explained by the independent variable
In other words, it is the sum of squares (SS) by the proposed model divided by the
total sum of squares

This tells us:
Relation to unexplained variance as R2 tells us variance of models' errors
compared to the data's total variance
Goodness of fit - high R2 = better fit
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