
CS 231: Algorithmic Problem Solving
Spring 2022 Notes By Richard Dong

Module 1: Introduction

Defining Problem

Problem: a way of associating an input and an output. It will include:

input specification: explaining the types of data used
output specification: explaining how the input data is related to what is produced

The problem should be as general as possible (by ignoring unimportant details) and make
senses(for any possible input data, there will exist output data that satisfies the output
specification).

In addition:

Instance: an instance of a problem is specific data that satisfies the input specification

Solution: A solution to an instance of a problem satisfies the output specification

Specifying a Problem

This is generally done in 4 steps:

Make the problem general.
Form the input specification using the most important data.
Form the output specification using one or more easily measurable goals.
Make sure that there is output specified for any data that satisfies the input
specification.

The algorithm consumes the instance and produces the output.

Questions to consider when forming a problem

Can the input set or sequence be empty?
If so, add “False” as a possible output if needed.

Can there be more than one solution?
If so, use “a” instead of “the”.

Can ordered data items appear more than once?
If so, use “nondecreasing” instead of “increasing” and “nonincreasing” instead of

“decreasing”.

Types of Data: Grids

Grid is a way of organizing data items in a rectangular arrangement In a grid:

there ares rows and columns
both start at 0 and end at number of rows/columns -1

Use the python module grids.py.

Types of Data: Trees

For data that is organized as a hierarchy, progress over time, or subdivision of data into
groups and subgroups.

For reference: check trees.py

A tree consists of zero or more nodes

in a nonempty rooted tree, one node is designated as the root.
Except for the root, each node has a parent, to which it is connected by an edge.
Each edge connects a parent and a child.
Nodes with the same parent are siblings.
In an ordered tree, the children of each node are assigned an order.
In an unordered tree, no order is provided.

The relative order of the subtrees of a node is not important
We can categorize nodes by whether or not they have children:

a node without children is a leaf and a node with at least one child is an internal
node.

A path in a tree is a sequence of nodes (without repeats) such that there is an edge between
each consecutive pair of nodes in the sequence.

Equivalently, a path can be defined as a sequence of edges.
The length of the path is one less than the number of nodes

that is, the number of edges included in the path
The first and last node in the sequence are the endpoints of the path, and all other
nodes are intermediate nodes of the path.

To be able to use trees for a wide variety of applications, we may add extra information, such
as weights or colours, to nodes or edges.

EXAMPLE

https://online.cs.uwaterloo.ca/courses/course-v1:UW+CS231+2022_05/courseware/edb8f8a5bbe84864a32ae5cd759e7d47/d422b664e0074999a8c565937205a206/3?activate_block_id=block-v1:UW+CS231+2022_05+type@vertical+block@b25675d300c346f195b4651f86ed26c9
https://online.cs.uwaterloo.ca/courses/course-v1:UW+CS231+2022_05/courseware/edb8f8a5bbe84864a32ae5cd759e7d47/d422b664e0074999a8c565937205a206/4?activate_block_id=block-v1:UW+CS231+2022_05+type@vertical+block@217937dad0834231a7d00b3bbbb241e6

In the image below, the root has the label a; the leaves have the labels d, e, h, i, j, k, and m;
the children of g have labels k and l; and the nodes with labels b, c, and d are siblings.

The nodes with labels b and m are the endpoints of a path of length 5, since the path is
composed of five edges.

Unless stated otherwise, you can assume that each tree has a root and is an unordered tree.

Types of Data: Graphs

For reference: check graph.py

Instead of nodes we have vertices (which is the plural of vertex);

we still use the term edges for connections between pairs of vertices. As we did for trees,
we may add extra information, such as weights or colours, to vertices or edges.

Here, the only important information is which pairs of vertices are connected by edges.

We also have paths in graphs. The endpoints are now vertices, and vertices that are not
endpoints are called intermediate vertices. The length of a path is one less than the
number of vertices, or the number of edges.

https://online.cs.uwaterloo.ca/courses/course-v1:UW+CS231+2022_05/courseware/da0a5e5fe1fb423091ecce17626f642a/1f09653c84014ddba4b730caf80c956a/1

Unlike a tree, we don't have a guaranteed number of edges: there can be no edges at all,
every possible edge, or anything in between.

complete graph: a graph in which there is an edge between any pair of vertices.
connected graph: a graph in which there exists a path from any vertex to any other
vertex.
simple graph: a graph without vertices connecting to themselves, or more than one
path connecting between vertices
undirected graph: There is no order or direction between vertices

The endpoints of a path might be connected by an edge outside of the path. If that is the
case, the vertices form a cycle.

Vertices that are endpoints of an edge are called adjacent. Neighbour of an vertex are all
adjacent vertices. The set of neighbour is called neighbourhood.

We can characterize the vertex by the number of neighbours that it has, or degree.

Incidents are used to describe two edges that share an endpoint, and also the relationship
between an edge and a vertex that is one of its endpoints.

Terminologies for describing a graph

V(G): set of vertices of G
Size of V(G) is n

E(G): set of edges of G
Size of E(g) is m

ab or {a,b}: an edge between a and b

Unless stated otherwise, you can assume that each graph is simple and undirected.

Types of Data for Input and Output Specification

Input Specification

Numbers
Strings
Sets
Sequences
Grids
Trees
Graphs

Output Specification

Ordering of data items
Categorization of data items
Subset of data items

Instance Size

Formally, the size of the instance is the number of bits used in the encoding. The number of
bits depends on the number of data items and their types.

We will use more imprecise measures of instance size to classify runtimes:

Number: Where the instance is a number that can be very large, the variable n is the
size of the number.

In contrast, when a number is a bound that may be dominated by the size of other
data in the instance, it is considered to be of constant size.

String: The variable n is the length of the string.
Set: The variable n is the number of elements of the set.
Sequence (string, Python list, Python tuple): The variable n is the length of the
sequence.
Grid: The variable r is the number of rows and the variable c is the number of
columns.
Tree: The variable n is the number of nodes in the tree.
Graph: The variable n is number of vertices and the variable m is number of edges.
Multiple types of data: If the instance consists of a multiple types of data, a constant
size data item can be ignored.

For example, if the instance is a graph and an integer bound, we use n and m for the
graph and do not count the size of the integer separately.

Optimization Problems

Optimization Problem: Any problem that attempts to find an entity that is the best in some
way

It is a minimization problem if the goal is to find a feasible solution with minimum value
It is a maximization problem if the goal is to find a feasible solution with maximum
value.

Feasible Solution: the type of information that we're trying to produce. Some feasible
solution might be better than the others; informally also known as entity.

Optimal solution: a feasible solution that has a numerical value that reaches our goal

Recipe for defining an optimization problem

1. Define a feasible solution.
2. Provide a way of calculating a numerical value for each feasible solution.
3. Specify whether the goal is maximization or minimization.

Types of Optimization Problems

constructive optimization problem: an optimal (the best) solution.

evaluation optimization problem: the value of an optimal solution.

Always make sure that there is an output specified for any data that satisfies the input
specification

Decision Problems

The output of a decision problem is the answer to a yes/no question

yes-instance: the output is yes
no-instance: the output is no

To convert an optimization problem into a decision problem, we typically add a bound that
we can use in the question.

Input specification: your original input specification and a number n
For minimization: is there a value at most of a number n?
For maximization: is there a value at least of a number n?

may be able to stop as soon as a witness has been found

witness: information indicating which solution is correct

Search Problems

Output is an entity that satisfies the specified conditions

a constructive optimization problem can be viewed as a special type of search problem
In this course we will reserve the term search problem for problems that are not
constructive optimization problems

One natural way to form a search problem is from a decision problem

Counting and Enumeration Problems

The output of a counting problem is the number of entities that satisfy the specified
conditions.

The output of an enumeration problem is all the entities that satisfy the specified

conditions.

The set of all entities that satisfy the conditions

Paradigms

Basic techniques or approaches that can be used for many problems.

Make sure that you are using the paradigm specified, even if it results in a cumbersome
algorithm.
Not all paradigms work for all problems.
A paradigm can be used to create multiple, different algorithms for a problem.
An algorithm developed using a particular paradigm may not be fast.
An algorithm developed using a particular paradigm may not produce the correct
output.
Important aspects to consider

designing algorithms,
analyzing an algorithm for correctness,
analyzing an algorithm for running time, and
implementing an algorithm.

Paradigms for Exhaustive Search

Solving a problem by searching through all the possibilities.

Sketch

1. Generate all possibilities
2. Extract information from one possibility at a time
3. Determine the solution from the extracted information

Checklist

Definition of set of possibilities
Process for generating all possibilities or the next possibility
Definition of information to extract
Process for extracting information
Process for forming the solution from all or some of the extracted information

Module 2: Order Notation

Functions

We are using functions to express running times, where typically the variable n is used to

express the size of an instance.

ex: f(n) = n/2 means that the running time is half of the instance

We care about how does the value of the function depend on the size of n.

Floors and Ceilings

Floor: produce the nearest integer below the symbol
Ceilings: produce the nearest integer above the symbol

When n is even: floor of n/2 = ceiling of n/2 = n/2 When n is odd: floor of n/2 = n/2 - 1/2;
ceiling of n/2 = n/2 + 1/2

floor of n/2 + ceiling of n/2 = n (regardless of whether n is odd or even)

Exponents and Logarithms

In computer science, log means log2.

For log n --> Think about how many times you can divide n by 2 to reach 1
If we are taking the ceiling of log(10) --> we round up to the next cloest interger
Some Log Laws:

loga x = logb x / logb a
log xy = log x + log y
log (x/y) = log x - log y
log x^k = k log x

Sets

A set contains at most one copy of an item

We use !! ∈ "" to indicate that the item ! is contained in the set "
Size of set: the number of items, or elements, in the set
empty set: has size zero (denote as {})
subset: The set " is a subset of the set # , written as "" ⊆ ##, if every element of " is also
an element of #
If " ⊆ # and # ⊆ ", then S = T
If there exists an element of S that is not in T or an element of T that is not in S, then " ≠
#
"" ⊂ ## indicates that every element of " is contained in # but that " and # are not equal

contains an element that is not in "
Union (∪): the union of " and # consists of every element that is in at least one of " and
#

Intersection (∩): The intersection of " and # consists of every element that is in both "
and #

Sum, Product, Maximum, Minimum, Bounding Quantities, and
Ordering

∑ is a Greek equivalent of S for sum, and that Π is a Greek equivalent of P for product.

We use min{set} and max{set} to find the max and min of a set

Or, minS{$}, the min from the set S

An arithmetic sequence is a sequence of numbers in which each number differs from the
previous number by the addition of some fixed quantity

Sum from i=1 to i=n is n(n+1)/2

A geometric sequence is a sequence where each number in the sequence differs from the
previous number by the multiplication of some fixed quantity.

sum from i=1 to i=n = ((1-c^n)/(1-c))

Bounding Quantities

To show x is at most z --> showing that ! ≤ % and that % ≤ &
If you already know that ! ≤ %, you can also conclude that ! ≤ %' for ' ≥ 1 and that ! ≤
%+(for (≥ 0.
you already know that ! ≤ %, you can also conclude that !/) ≤ % for) ≥ 1 and !−* ≤ % for *
≥ 0.

Permutation is an ordering of elements

the number of possible assignments of elements to categories
+ factorial and defined as +!

A combination is a way of selecting items from a collection, where the order does not
matter.

Running Time as a Function

Express the running time of an algorithm as a function f(+), where n is the instance size (or,
equivalently, the input size)

the smaller function is a faster algorithm
Not that larger instance size usually gives longer running time --> so make sure you are
taking about size of instances as a function --> DO NOT answer: for which isntances

does the algorithm run fastest (as the number is 1)
That is, do no attempt to fix instance size!

Probability:

When we have a set of possibilities (more formally, events), we can express how likely
each event is by assigning it a probability
The assignment of a probability to each event is a probability distribution
When the probabilities are all equal, as in this case, the probability distribution is known
as a uniform distribution.
Average case: The value of f(,) is the sum over all instances I of size k of the
probability of I multiplied by the running time of the algorithm on instance -.

Best case running time: When we choose the smallest value as the representative for each
instance

Worst case running time: If we choose the largest value as the representative for each
instance

we usually use worst case running time

We can often show upper or lower bounds without constructing actual instances.

Each type of running time is determined by choosing a representative value for each
instance size.

For any instance size, the representative value:
best case <= average case <= worst case

Categorizing Functions

Category of Functions: Depend on how n is operated on

Constant
Logarithmic
Linear
Quadratic
Exponential

Dominant: a term that is biggest as a function of n

Simple Function: no multiplicative factors or additive terms

Constant: 1
Logarithmic: 1og(n)
Linear: n

Quadratic: n^2
Exponential: 2^n

We use Θ(.(+)) to define a set in terms of the simple function ..(++).

Theta represents both the upper bound and the lower bound
We can then have members of a catagory, where /(+) ∈ Θ(.(+))
They are in the catagory because g(n) is the dominant term

Multiple Variable Functions:

the size of a grid is defined in terms of both the number of rows and the number of
columns
the size of a graph is defined in terms of both the number of vertices and the number of
edges
Simple Functions on Two Variables (m and n)

1, log +, +, +^2, log 0, 0, 0^2, 0++, 0 * +, + log 0, 0^2+^3
To make sure that we represent the function property, we retain any term that might be
dominant.

you may not know how m and n is related, so only eliminate the dominant term of
the same variable

Catagorizing functions with partial information

We can think of the line at the top of the rectangle for Θ(.(+)) as indicating an upper
bound based on .(+) and the line at the bottom of the rectangle for Θ(.(+)) as indicating
a lower bound based on .(+)
Refering to the run-time box diagram above:

/(+) is in 11(..(++)) (pronounced "Big Oh" of .(+)) if /(+) is below the line at the top of
the rectangle for Θ(.(+)) --> upper bound
/(+) is in Ω(..(++)) (pronounced "Big Omega" of .(+)) if /(+) is above the line at the
bottom of the rectangle for Θ(.(+)) --> lower bound
if /(+) ∈ 1(.(+)) and /(+)∈Ω(.(+)) , then /(+) ∈ Θ(.(+))
if /(+) ∈ Θ(.(+)) , then /(+)∈1(.(+)) and /(+) ∈ Ω(.(+))

If g(n) < h(n):

If /(+) ∈ 1(.(+)) , then /(+) ∈ 1(ℎ(+)) .
If /(+) ∈ Ω(ℎ(+)) , then /(+) ∈ Ω(.(+)).

All O, theta, and omega uses simple functions

Order Notation Formalism

We do not realy care about small n, we care more about the long term behaviour of f(n). In
addition, we only care about the shape, rather than the specific values

Formal Definitions of Asymptotic (Order) Notation:

/(+) is in 11(..(++)) if there is a real constant)>0 and an integer constant +0≥1 such that
//(++) ≤).).(++) for every +≥+0.
/(+) is in Ω(..(++)) if there is a real constant)>0 and an integer constant +0≥1 such that
//(++) ≥).).(++) for every +≥+0
/(+) is in Θ(..(++)) if there are real constants))1>0 and))2>0 and an integer constant
++0≥1 such that))1..(++) ≤ //(++) ≤))2..(++) for every +≥+0.

Some Important Ideas:

The constant +0 is used to ignore how the function behaves on small values.
The constants) ,)1 , and)2 can be less than 1.
If you have constants to show that /(+) ∈ 1(.(+)) and that /(+) ∈ Ω(.(+)) , the larger of
the ++0 values will hold for both.
For a particular pair of functions /(+) and .(+) , there may be many possible choices of
constants that fit the definition.
When proving using the formal definition, make sure that explicit constants c and n0 are
used

Analyzing Running Times

For Sums of Functions: keep only the dominant term (or terms, if there are multiple
variables) among the categories

use Θ if all the chosen categories (dominant ones) use Θ, and
use 1 if any one of the chosen categories (dominant ones) uses 1

For Products of Functions: take the product of the categories, keeping only the dominant
term or terms if there are additions

use Θ if all the categories use Θ , and
use 1 if any one of the categories uses 1

For Multiple Variables:

Suppose we have two variables, 0 and + .

If we can express 0 as Θ(.(+)) , then we can substitute .(+) for 0 anywhere in the simple
function, and then simplify the simple function to remove any terms that are dominated.
If we can express 0 as 1(.(+)) , the upper bound on 0 might allow us to remove terms
using 0 as no longer dominant.
If we can express 0 as Ω(.(+)) , the lower bound on 0 might allow us to remove terms
that are dominated by the terms using 0 .

You can use any kind of order notation (1, Ω, or Θ) to classify any kind of running time
(worst-case, best-case, or average-case running time).

Variables must remain variables.

A variable + does not need to appear in the expression of a function on + ; for example, if the
function does not depend on + at all, a constant function can be used.

Runtime for permutation:

The function +! is greater than 2+ and smaller than +^+ .
nPk ∈ Θ(+,)

Module 3: Pseudocode

Describing Algorithms

Goal: be able to describe algorithms in enough detail that we can compare their running
times without investing the time to code them

Describe an algorithm in a way that does not depend on the choices of programming
language, operating system, or hardware.
Use the algorithm description as a way to get a rough estimate of the running time that

can be compared to other algorithm ideas.

Models of Computation

a set of operations and the resources they require, such as time and space.

In this course, we will focus on time requirements.
the time requirements will not typically equal those of an actual program due to the
choice of different hardware, operating systems, and programming languages
obtain rough upper and lower bounds, using order notation

Random Access Machine (RAM)

A commonly-used model of computation
consists of a set of registers, used to store values, and a set of possible instructions
A RAM algorithm consists of a sequence of instructions, which can be combined to
form familiar program structures such as branching and looping.

Pseudocode

In analyzing pseudocode, we are implicitly making assumptions about costs of operations
on a RAM, where simple operations can each be executed in constant time

assignment of a value to a variable
use of a variable
moving to another point in the program
simple arithmetic and Boolean operations.

The cost of pseudocode approximates the cost of an actual program.

For this course, pseudocode contains:

An algorithm sketch, using sentences or point form to get across the basic ideas
(usually from the suggested paradigm)
Descriptions in high-level pseudocode, to show the structure of the algorithm without
going into details
Descriptions in detailed pseudocode, to allow line-by-line analysis

limit yourself to the allowed operations, methods, and functions, as detailed on the
reference page on costs.

For style of pseudocode, see Pseudocode used in this course.

Analyzing Runtimes

Single Line

https://online.cs.uwaterloo.ca/courses/course-v1:UW+CS231+2022_05/courseware/edb8f8a5bbe84864a32ae5cd759e7d47/17012ec26e0541feba6bb83e75af9ed3/3?activate_block_id=block-v1:UW+CS231+2022_05+type@vertical+block@8d2ea555156e4ab8a68a1422e6a36f13
https://online.cs.uwaterloo.ca/courses/course-v1:UW+CS231+2022_05/courseware/edb8f8a5bbe84864a32ae5cd759e7d47/17012ec26e0541feba6bb83e75af9ed3/2?activate_block_id=block-v1:UW+CS231+2022_05+type@vertical+block@9a5baa19c1ff4d128908e59c5731d4be%23usedcourse

need to know the cost of each operation, method, or function used in the line
assume that each operation, method, and function requires time at least Θ(1)

If we repeat constant-time steps a non-constant number of times, such as in a loop,
then their cost might dominate the cost of other steps.
Do not assume that Python list operations, methods, and functions can be executed in
constant time. Examples such as sort, map, filter, and reduce require time that depends
on the length of the list.
The running time of many Python dictionary operations, functions, and methods also
depend on the size of the dictionary.
If an operation, method or function does not appear on the reference page on costs, it
probably should not be used in an assignment question.
Some constant time steps:

Assigning a value to a variable
Using a variable
Using an arithmetic or Boolean operation or a comparison
Moving to another line in the program
Returning a value using return

The function by itself does not incur any cost, only when it is called/run

Block of Code

If each block is executed once, the total cost will be the sum of the costs of the blocks.
Since we are using order notation, we will be retaining only the dominant term or terms.
Branching (if-statements) in blocks:

consider that some lines of code may not be executed and the costs of the
conditions that are being checked.
the total cost is determined by adding the costs of the lines in the branch that is
executed, including the costs of any conditions that are evaluated to reach that
branch

Loops

add up the costs of all iterations
the cost of an iteration as being the sum of cost of iteration management (the cost
of ensuring that the loop is executed the correct number of times) and the cost of
the loop body (the cost of the indented lines executed during each iteration)

Common situations: make sure you explain which it is and why before you apply the cost
The cost of each iteration is asymptotically the same for each iteration (that is, each
iteration has a cost in Θ(.(+)) for some function .(+)).

For this situation, the cost of the loop is the product of the number of
iterations and the cost of one iteration.

The cost of iteration $ is in Θ($) .
For this situation, the cost of the loop is Θ(,,^2) , where , the number of

https://online.cs.uwaterloo.ca/courses/course-v1:UW+CS231+2022_05/courseware/edb8f8a5bbe84864a32ae5cd759e7d47/17012ec26e0541feba6bb83e75af9ed3/3?activate_block_id=block-v1:UW+CS231+2022_05+type@vertical+block@8d2ea555156e4ab8a68a1422e6a36f13

iterations
In general:

For worst-case analysis
one option is to obtain an upper bound using 1 by multiplying the number of
iterations by the cost of the most expensive iteration, where the cost of each
iteration is the sum of the cost of iteration management and the cost of the
loop body.

For best-case analysis
find an instance on which the number of iterations is less than the maximum
possible, and for which the cost of a loop is less than the maximum possible.
What makes the analysis tricky is that in order to base the analysis on a smaller
number of loops and a smaller cost for some iteration, one needs to be sure
that there exists an instance for which both occur.

Complete Functions

challenging, since not every block of code will be executed for every instance
We cannot in general simply sum up the costs of a sequence of blocks

If we can express running time using Θ instead of 1 , we will do so. If this is not possible,
you should use 1, but with the smallest function possible
Recipe for analyzing worest-case running time

Break each block into blocks.
Determine a bound on each block individually.
Retain all dominant costs.
Use Θ if all costs are expressed in Θ and can occur simultaneously and use 1
otherwise.

If you introduce temporary variables in the analysis of an algorithm, be sure to remove
all temporary variables from the final result.

Module 4: Greedy Algorithm

Motivation

While exhuastive search is great, it is very costly since exhaustive search requires
generating all possible feasible solutions, and the number of feasible solutions is large.

Paradigm for Greedy Algorithms

A greedy algorithm builds up a solution step by step, often using an ordering to make a
decision.

The term "greedy" captures the idea of building up the solution by grabbing whatever
seems to be the best at the moment.

Preprocessing Stage:

Organizing all the data at once

Sketch for Greedy Algorithm

Process data
Loop to build up the solution step by step

Use information to make a decision
Make updates to information

Checklist for Greedy Algorithm

Process for preprocessing data
Definition of steps needed to build a solution
Definition of information to be used for a decision
Definition of criteria for a decision

In this course, we'll use the convention that unless specified otherwise, ties will be
broken arbitrarily

Note that his is not random: we still have rules, they just can be any rules. The
term random means that you are using randomization to make a choice.

Process for making updates to information

The greedy algorithm isn't guaranteed to produce the correct solution, even though it does
run faster.

Logics and Proofs

Statements:

statement can be either true or false
Logic operators:

3 OR 4, which is true when 3 is true, 4 is true, or both 3 and 4 are true and false
otherwise
3 AND 4, which is true when both 3 and 4 are true and false otherwise
NOT 3, which is true when 3 is false and false otherwise

Predicates

an expression that refers to at least one variable
ex: P(x) = "The number ! is odd.”

Existential Statements

the predicate is true for at least one value in the set

"There exists an ! in the set " such that 5(!) is true."

Universal Statements

the predicate is true for all values in the set
"For every ! in the set " , 5(!) is true."

To prove that an algorithm is correct, we will typically prove a universal statement, where
" can be viewed as the set of instances and 5(!) can be viewed as the statement that the
algorithm performs correctly on instance !.

In contrast, to prove that an algorithm is not correct, we will typically prove an existential
statement, where " is again the set of instances but now 5(!) is the statement that the
algorithm fails to perform correctly on instance ! .

Negation

When 3 is a simple statement, we can usually form the negation by adding NOT or by
replacing true with false.
To negate an existential statement, we state that there does not exist any value in the
set for which the predicate is true.

“For all ! in the set " , 5(!) is false.”
We have just transformed an existential statement about 5(!) into a universal
statement about the negation of 5(!) .

To negate a universal statement, we state that the predicate is not true for every
value in the set. That is, we state that there exists a value in the set such that the
predicate is not true.

"There exists an ! in the set " such that 5(!) is false”
We have just transformed a universal statement about 5(!) into an existential
statement about the negation of 5(!) .

Negation not only makes existential statements into universal statements and vice versa,
but also exchanges ORs and ANDs.
The negation of a true statement will be a false statement, and the negation of a false
statement will be a true statement.

Implication

the statement " 3 implies 4 " means that if 3 is true, then 4 is true.
The implication says nothing about what happens when 3 is false, so if 3 is false, 4 can
be either true or false
The negation of " 3 implies 4 " is " 3 is true and 4 is false."

Converses

We can form the converse of an implication " 3 implies 4 " by swapping 33 and 44 to

form " 4 implies 3 "
an implication may be true without its converse being true

Contrapositives

the contrapositive of " 3 implies 4 " is the implication "not 4 implies not 3 "
An implication and its contrapositive are always equivalent (they are either both true or
both false)

If " 3 implies 4 " and " 4 implies 3 ."

both an implication and its converse are true
" 3 if and only if 4 "

" 3 if 4 " is another way of saying " 4 implies 3 " and
" 3 only if 4 " is another way of saying " 3 implies 4 ."

prove " 3 if and only if 4 " by proving both " 3 implies 4 " and "not 3 implies not 4 ."

Proofs

a statement is true whenever its negation is false, therefore:
you can prove that a statement is true by showing that its negation is false, or
you can prove that a statement is false by showing that its negation is true.

modus ponens
if 3 is true and " 3 implies 4 " is true, then 4 is true

Proof by Contradiction

A statement cannot be both true and false. If we can show that a statement is both true
and false, we have reached a contradiction.
To show X is true:

Suppose that 6 (which we wish to prove) is false.
Choose a statement 7 that we know to be true.
Use the assumption that 6 is false to show that 7 is false.
Since 7 being both true and false is a contradiction, we know that 6 is true.

Proving a Univerisal Statement

we need to show that 5(!) is true for every ! in " .
choose a generic ! in " and show that 5(!) is true.

Proving an Existential Statement

Choose an ! .
Show that ! is in " .
Show that 5(!) is true.

Proving an algorithm is not correct

To prove that an algorithm is correct, we need to prove a statement of the form "On any
instance, the algorithm produces the correct output."

To prove that an algorithm is not correct, we need to prove its negation: "There exists an
instance on which the algorithm produces an output that is not correct."

Choose an instance ! .
The instance ! is called a counterexample.
Maybe asked to show:

an example that fails on at least one sequence of arbitrary choices when
breaking ties, or
an example that fails on every sequence of arbitrary choices when breaking
ties.

Show that ! is an instance of the problem the algorithm is supposed to solve.
Show that the algorithm produces % .
Show that the correct solution to the problem on ! is & , where & is better than % .

Examples of Greedy Algorithm

Kruskal's algorithm
relies on a way to group vertices into sets, where the vertices in a set form a tree.
Checking to make sure that no cycle has been formed is as simple as checking to
ensure that the endpoints of each added edge are in different sets.
worst-case running times: 1(0log0)

+ is the number of vertices and 0 is the number of edges.
Prim's algorithm

relies on a way to update the cheapest edge connecting a vertex outside the tree to
a vertex in the tree.
worst-case running times: 1(0log+)

+ is the number of vertices and 0 is the number of edges.

Proving the correctness of a greedy algorithm

Two properties must be satisfied:

Optimal Substructure Property:
A problem satisfies this property when the optimal solution to an instance of a
problem can be formed from optimal solutions to one or more smaller instances
formed from the original instance.

Greedy Choice Property:
A greedy algorithm satisfies this property when there is an optimal solution

consistent with each greedy choice made by the algorithm.

Summaries

Properties:
Each step of the algorithm eliminates some possible solutions from consideration,
as no decision is ever "undone"
Not all problems can be solved using greedy algorithms.
Proving correctness can be difficult.
Proving an algorithm is not correct can be achieved with a single counterexample.
Running time analysis is often simple.

Module 5: Divide and Conquer

Paradigm

The term divide comes from the fact that we divide an instance of the problem into two
smaller instances and the term conquer comes from the fact that we then go on to solve, or
conquer, the smaller problems. Then we combine the solution or solutions of the smaller
instance or instances to form a solution to the original instance.

Recursion

a recursive definition consists of at least one recursive case and at least one base case.

A recursive case defines an entity in terms of one or more entities of the same type,
each of which are closer to the base case.
The base case, in contrast, is defined without any reference to entities of the same type.

a recursive function consists of one or more base cases, solved directly, and one or more
recursive (or general) cases, solved using the function itself.

Important Caution

A function call to an input the same size (or the input itself) leads to an infinite loop.
The absence of a base case may mean that the computation never ends.
Base cases and recursive cases together must cover all possible sizes of inputs.

Algorithm Sketch

Solve base cases directly
Divide into smaller instances
Conquer recursive cases using recursive calls
Combine results on smaller instances

Checklist

Definition of smaller instances
Definition of base cases
Process for dividing the instance
Process for combining results

an easy divide step resulted in a not-so-easy combine step

Recurrence Relations

A recurrence relation (or recurrence for short) is used to express the running time of an
algorithm on an input of size + , written as #(+) , for all values of + . This is typically expressed
as:

For small values of + , base cases expressed as a function of + .
For larger values of + , a recursive case expressed as a function of ++ and of ##(,,) for one
or more values of , smaller than + .

For the recursive case, the cost can be viewed as the sum of the divide step, the
conquer step, and the combine step.
The cost of the conquer step will be written using ##(,,) for one or more values of ,
smaller than + .

k might be expressed using floor or ceiling notations

To be able to compare algorithms with running times expressed as recurrence relations, we'd
like to be able to determine the category using order notation. To do so is know as putting
the recurrence in closed form or, equivalently, solving the recurrence. (ie: without the use
of T on the right hand side)

For greater efficiency of both space and time, we can instead consider making in place
computations, where we access and modify a subsection of a list, such as by specifying the
starting and ending indices of the subsection of interest.

We can then avoid the linear cost of creating a slice.

Three major methods for solve recurrances are

Iteration method
Master theorem method
Substitution method

Iteration Method

Apply the definition of #(+) iteratively, expressing #(+) in a general form for any number
of iterations.

whatever is doing to n to reach the base case, keep doing it
Choose a number of iterations that reduces any smaller term to the base case.
Express #(+) in closed form.

trying to manipulate order notation directly in the iteration method can be dangerous, and
should be avoided.

If, in an assessment, you are asked to use the iteration method to prove a closed form is
in 1(.(+)) , use a specific function /(+)∈1(.(+)) to prove the result

Master Method

It does not work for all recurrence relations

It only works on the folloing form:

where a>= 1 and is a constant, b>=1 and is a constant, and we ignore floors and ceilings
we treat both the floor and celing as if they were not floor or ceiling

 represent the divide and combine step

To determine the closed form of a recurrence of the form , the
Master Theorem shows that it suffices to compare the values of /(+) and

/(+) is “smaller than” ! if /(+)∈Θ(.(+)), !∈Θ(ℎ(+)) and ..(++)<ℎ(++), and
/(+) is “bigger than” ! if /(+)∈Θ(.(+)) , !∈Θ(ℎ(+)) and ..(++)>ℎ(++).

Proof By Induction

To establish the closed form of a recurrence relation, we wish to prove a universal statement
of the form "For every integer +≥(, the predicate 5(+) is true."

Typically the predicate 5(+) is of the form #(+)=/(+) , #(+)≤/(+) , or #(+)∈1(+) for some
function /(+) .

When proving predicates for all possible instance sizes, one way to handle such a proof is to
use induction.

The universal statement "For every ! in " , 5(!) is true" can be viewed as an infinite
sequence of statements 5(0) , 5(1) , 5(2) , and so on. We wish to show that each of
these statements is true.
We will prove the statement in order, starting with 5(0) . We will use the fact that 5(0) is
true to show that 5(1) is true, use the fact that 5(1) is true to show that 5(2) is true, and
so on.

proving that 5(0) is true, known as the base case

T(n) = aT(n/b) + f(n)

f(n)

T(n) = aT(n/b) + f(n)
x = nlog

a
b

climbing the ladder from P(i) to P(i+1), known as the induction step
show that for any i, P(i) implies P(i+1)

using modus ponens to put the steps together
P(i) is true and P(i) implies P(i+1), then P(i+1) is True

Proving the induction step entails making use of a statement known as the induction
hypothesis, which is equivalent to assuming that 5 holds for smaller values in order to prove
that 5 holds for larger values.

Formal Statement of the Master Theorem

Suppose for constants a>=1 and b>1:

if f(n) is in for some constant , then T(n) is in
if f(n) is in for some constant , and if for some
constant of , then T(n) is in
If f(n) is in , then T(n) is in

Substitution Method

Typically, the method is used to prove an upper bound on a closed form of a recurrence.

Such a bound can be viewed as a universal statement of the form "For all positive
integers + , #(+)≤/(+) ."

We start with the induction hypothesis, assuming that the statement holds for smaller
integers. The name of the method comes from the fact that we substitute /(,) for each #(,) ,
,<+ , in the recurrence relation and then show that #(+)≤/(+) . We typically complete the
base cases last, verifying that #(+)≤/(+) for values of + covered by the base cases.

The first step of the substitution method is to guess a possible upper bound on #(+) and,
through the process of trying to prove that it is an upper bound, gradually refine the guess
until the proof is successful.

In this course, you will be provided information about the upper bound on #(+) to use

Recipe

Guess an upper bound for #(+) .
Substitute the guess for uses of # on smaller values.
Simplify the right hand side to prove the bound.
Check that the bound holds for the base cases.

Substitution and Order Notation

To show that #(+)∈1(.(+)) , do not try to use 1(.(+)) directly in the recipe.

T(n) = aT(n/b) + f(n)

O(nlogba−ϵ) ϵ > 0 Θ(nlogba)
Ω(nlogba+ϵ) ϵ > 0 af(n/b) <= cf(n)

c < 1 Θ(f(n))
Θ(nlogba) Θ(nlogbalog(n))

Instead, choose a function //(++)∈11(..(++)) and use the substitution method to show that
#(+)≤/(+).

General ideas:

Do not use order notation in the guess in Step 2.
Use placeholders for constants.
Adjust and repeat as needed.
Choose specific values for all placeholders.
Make sure the general case and base cases cover all values.

Summary of Devide-and-Conquer

An algorithm is created by decomposing an instance into smaller instances of the same
problem, ideally in such a way that the cost of merging and combining is not too costly
and the smaller instances are of roughly the same size.
Divide-and-conquer works primarily for problems with instances that can be
decomposed (e.g. a set, entries in a sequence or grid).
Correctness depends on ensuring that the correct smaller instances have been formed.
Running time is determined using a recurrence.

Module 6: Dynamic Programming

Motivation: Matrix Multiplication

Some Definitions:

The matrix order, namely, , is fixed for a given chain of matrices. It is part
of the input specification, and is not changed by the algorithm.
A parenthesization is a way of grouping matrices using parentheses. There may be
more than one parenthesization for a particular matrix order.
The multiplication order is the order in which the multiplications take place. There may
be more than one multiplication order for a particular parenthesization.

When multiplying M1 and M2, the column of M1 should requal to the rows in M2

Goal: multiply a sequence of matrices in the cheapest way possible

A parenthesization of the matrices 80, … forming an order of multiplication that results
in the smallest number of multiplications of pairs of values, where matrix has
dimensions *$×*$+1 (rows time columns)

cost is the product of the number of rows in the first matrix, the shared dimension,
and the number of columns in the second matrix

M0M1M2M3

Mi

We want to use a table to store the information we have already known

Dynamic Programming

The ideas of solving smaller instances, storing them in the table, and then looking them up
to solve larger instances, is known as the dynamic programming paradigm

Sketch

Create a table
Loop over table entries

Fill in base cases
Fill in non-base cases

Extract solution

Checklist

Definition of the solution in terms of solutions to smaller instances
Definition of information to store in each table entry
Definition of base cases and their values
Definition of the shape of the table or tables needed to store the solutions to the smaller
instances
Definition of order of evaluation
Process for extracting the solution from the table

Analyzing Dynamic Programming

Three Stages:

Creating the table
Filling the table
Extracting the solution

Implementing Tables

Tables should be created as:

1D: Grids
2D: Grids
3D: ThreeD
Tree: Tree

To store multiple values:

use multiple tables, one for each type of value, or

use a single table that stores objects composed of multiple values

Optimal Substructure

The optimal solution to an instance of the problem can be formed from optimal solutions to
one or more smaller instances formed from the original instance.

Recipes:

Using the optimal solution 1 for an arbitrary instance - , construct one or more smaller
instances.
Decompose 1 into pieces, one for each smaller instance.
Show that if any piece 1′ of 1 is not an optimal solution for a smaller instance -′ of - ,
then 1 is not an optimal solution for - .

Choosing Table Shape

A "triangle" shape may occur when $<9 or when 8[$,9]=8[9,$] .
We might be able to use a few tables of a smaller dimension if entries depend on only a
few rows or a few columns --> erase the previous entries when you do not need them
any more

The does not apply to the situation in which previous table entries need to be re-
examined in order to extract the solution.

Order of Evaluation

The key to determining the order of evaluation is to make sure that the entries on which the
current entry depends have already been filled.

If filling depends on j-2 and j-1 and on i and i+1, ensure you fill in all j in increasing order
first

Options for 2D table:

Increasing order by row; within each row in any order by column
Increasing order by row; within each row in increasing order by column
Increasing order by column; within each column in any order by row
Increasing order by column; within each column in increasing order by row

Summary

Properties

Dynamic programming consists of solving a problem by building up solutions to smaller

instances, not all of which may be used in the solution.
Problems that satisfy the Optimal Substructure Property are most appropriate for this
paradigm.
Dynamic programming works on instances from small to large, working "bottom up"
instead of "top down".
Correctness follows from correctly defining how solutions depend on solutions to other
instances.
Running time depends on the size of the table and the cost of filling in a single entry.

Expressing solutions in terms of other solution

Set - Determine an order on the elements. Smaller instances are defined using smaller
subsets of the elements. Bigger instances are formed by adding elements one at a time.
Sequence or Grid - Define a problem in terms of the position or positions in the
sequence. Smaller instances are at earlier positions. Bigger instances are at later
positions.
Tree - Define a problem on a subtree. Smaller instances are on smaller subtrees. Bigger
instances are on bigger subtrees.

Type of infromation stored

Decision problem - True or False (solutions to smaller instances)
Evaluation problem - Values (solutions to smaller instances)
Search or constructive problem - Information indicating which smaller instances led to
the optimal solution

Because the cost of the algorithm will depend on the amount of information stored in each
entry (cost of calculation as well as cost of reading time), often full solutions are not
stored.

A variant on dynamic programming, known as memoization, works top down in a manner
similar to divide-and-conquer.

Module 7: Hardness of Problems

Complexity

The complexity of a problem is a way of describing the worst-case cost of the best
algorithm for the problem.

Knowing the worst-case running time of an algorithm is not sufficient to know the
complexity. We need to prove that the algorithm is the best.

Upper and lower bounds

To prove that a problem has complexity Θ(/(+)) , we need an upper bound of 1(/(+)) and a
lower bound of Ω(/(+)) .

We distinguish between:

upper and lower bounds on an algorithm that solves a problem, and
upper and lower bounds on a problem.

An upper bound of 1(/(+)) on a problem means that there exists an algorithm
correctly solving the problem that in the worst case runs in time 1(/(+)) .
A lower bound of Ω(.(+)) on a problem means that any algorithm that correctly
solves the problem must use Ω(.(+)) time in the worst case.

Upper bound on problems

An upper bound on the worst-case running time of an algorithm that solves a problem is also
an upper bound on the problem.

The algorithm may not be the lowest possible upper bound, as the algorithm may not be the
best algorithm.

Lower bound on problems

A lower bound on the worst-case running time of an algorithm may not be a lower bound on
the problem, as it only refers to one algorithm. There might exist another algorithm that runs
in less time.

Lower bounds are hard to obtain, since they require reasoning not only about all known
algorithms, but also all possible algorithms that could exist.

Reasonable running times

Our motivation for determining the complexity of a problem was to know when to stop
looking for a better algorithm.

An algorithm that can run in time less than linear in the size of the instance, or sublinear
time, is especially notable.

Many of our exhaustive search algorithms result in exponential running times. If we can do
better, and obtain something subexponential, that would be preferable.

What is reasonable

polynomial time: the time that is at most polynomial.
polynomial size the size that is at most polynomial.
an algorithm to run in polynomial time if the running time is in for some constant)
, when there is a single variable +.

O(nc)

if there are two variables 0 and + , the running time is polynomial if it is in for
constants) and *

Robustness

One of the main reasons to classify polynomial time as reasonable is because the class of
problems with polynomial-time algorithms is robust.

Robustness means that a problem doesn't get booted out of the class due to a small
change in the definition.

For example, using a different graph implementation should not result in the complexity
of problems changing.

Properties of Polynomials

The sum of two functions that are at most polynomial is a function that is at most
polynomial.
The product of two functions that are at most polynomial is a function that is at most
polynomial.
If / and . are both at most polynomial, then so is the application of / to . .

Complexity classes

A set of problems that can be solved within specified bounds on resources using a
specific model of computation.

In this course, the resource will be worst-case running time on a RAM. Our main focus will
be the categorization of decision problems (ie, output is either yes or no).

We can define classes for:

a type of problem (e.g. decision, counting),
a model of computation (e.g. RAM), and
a resource (e.g time, space, size of numbers).

Complexity class P

A decision problem is in P if it can be solved using an algorithm with worst-case running time
that is at most polynomial in the size of the input.

P consists of problems for which there are polynomial-time algorithms.
an algorithm with worst-case running time that is at most polynomial in the size of
the input

A problem is considered to be tractable if it is known to be in P and intractable otherwise.

O(mcnd)

To prove that a problem is tractable, it suffices to demonstrate the existence of a
polynomial-time algorithm.

Key operations

We can start with the more modest goal of trying to prove a lower bound on all possible
algorithms of a particular type that solve the problem.

A key operation is a type of step that can be used to represent the other types of steps.

Often a key operation is itself a constant-time step. Counting the number of key
operations gives a lower bound on the cost of the entire algorithm, expressed as a
function of the instance size.
Since the larger the lower bound, the more information we obtain, we prefer the linear
lower bound obtained by counting comparisons over the constant lower bound obtained
by counting the single return statement.

Comparison-based algorithm

The only way that we can extract information from inputs is by comparing one to another.

We can use the term for algorithms that use any of the following type of comparisons: = , ≠ ,
< , > , ≤ , and ≥.

To prove a lower bound of /(+) on comparison-based algorithms for a problem, we need to
show that all comparison-based algorithms must use at least /(+) comparisons in the worst
case.

Decision Trees

To be able to count comparisons, we make use the decision tree, a model of computation
for comparison-based algorithms.

A decision tree is a way of representing the comparisons made in the course of an algorithm.
You can think of computation as starting at the root of the tree, and then ending at one of
the leaves. Along the way, each internal node corresponds to a comparison (or, equivalently,
decision) made along the way.

We can use the number of decisions as a lower bound on the cost of reaching a particular
leaf. Since we are ignoring all other steps, we cannot use a decision tree for an upper
bound.

More formally, an algorithm is represented as a tree as follows:

Each internal node in the tree represents a comparison.

Each leaf represents an output.
The children of a node represent the possible next courses of action, depending on
the outcome of the comparison.

The worst-case number of comparisons is the length of the longest path from a root to a
leaf, which is also the height of the tree. Any input that leads to a leaf at maximum depth is a
worst-case input.

Information Theory Lower Bound

If we can find a property that is true for every possible decision tree for a problem, we have a
property about every possible comparison-based algorithm that solves the problem.

Our goal is to prove a lower bound on the height of any decision tree that solves the
problem.

Statement:

A tree of height ℎ in which each node has at most two children has at most 2ℎ leaves.

Therefore,

If a problem has ũ possible outputs, then any comparison-based algorithm that solves
the problem requires time at least Ω(logũ) in the worst case.

the logarithm of the number of possible outputs is a lower bound on any algorithm
that solves the problem
this known as a decision tree lower bound, or, interchangeably, as an Information
theory lower bound.

Information theory lower bounds apply only to comparison-based algorithms. They do not
apply if we can compute various functions on the values of inputs.

Searching + values can have + possible outputs, hence Ω(log+) is a lower bound.

Sorting + values can have +! possible outputs, hence Ω(log+!) , or Ω(+log+) , is a lower bound.

Lower bound techniques

A technique that can be applied to any choice of key operations, including:

Access one data item (e.g. grid entry)
Compare two data items (outcome = or ≠)
Compare two data items (outcome = , < , or >)
Determine if two vertices in a graph are adjacent

Any correct algorithm relying on the key operation uses at least # steps by providing an

adversary strategy that ensures if an algorithm produces an answer after at most #−1 key
operations, it can be forced to be providing the incorrect solution for at least one input.

Adversary Strategy is a procedure that produces an answer to each question by the
algorithm, such that:

the answer is consistent with previously-given answers,
there is at least one input consistent with all the answers given,
there are no limits on time to compute an answer, and
there are no limits on amount of extra information to store;

but

there is no knowledge of the algorithm or future questions.

To form a lower bound, we need:

an adversary strategy, and
a proof that if the algorithm uses at most #−1 key operations, it will lose.

Recipe for determining an adversary lower bound

Specify an adversary strategy.
Determine a number of steps # that any correct algorithm must take.
Show that after #−1 steps of any algorithm, there will be at least two inputs consistent
with the answers given by the adversary, and that they yield different outputs.

Reduction

We could then prove that the algorithm is a polynomial-time algorithm by proving each of the
following statements:

Each helper function has worst-case running time that is at most polynomial in the size
of the input.
Each helper function is executed on an instance of size at most polynomial in the size of
the input to our problem.
Each helper function is executed at most a polynomial number of times.
All other steps of the algorithm can executed in at most polynomial time.

If we can construct an algorithm using at most a polynomial number of uses of polynomial-
time helper functions, the algorithm is a polynomial-time algorithm.

Problem A can be reduced to problem B if we can solve A using a procedure for B at most a
polynomial number of times and at most polynomial extra time.

The description of how to solve A using B is known as a reduction.

We say that A is reducible to B.
We do not need to know any details about the procedure for B. Although we know that
it is correct, we do not need to know how it works nor what its running time is.

Easy A, Easy B

If A can be reduced to B and B is "easy", then A is "easy" too.

When we are able to provide reductions in both directions, we say that the problems
are equivalent.
But, it is possible that B is hard yet A is easy

You cannot conclude that if A is "easy" then B is "easy".
There might be a polynomial-time algorithm for A that does not use B.

Easy B, Easy A

If A can be reduced to B and B is "easy", then A is "easy" too.

Verification Algorithm

A certificate for a yes-instance is information that can be used to verify that the yes-
instance really is a yes-instance.

Formal definition of verification

A polynomial-time verification algorithm for a decision problem is a polynomial-time
algorithm that has two inputs

an instance of a problem,
and extra information,

and produces "Yes" if the inputs are a yes-instance and a polynomial-size certificate and
"No" otherwise.

here must be a certificate for each yes-instance, but not for each no-instance

NP Complexity Class

NP is the class of decision problems that can be verified in polynomial time using a
polynomial-size certificate.

Recipe for Membership in NP

1. Give a certificate for each yes-instance and show that its size is at most polynomial.
2. Give a verification algorithm and show that its worst-case running time is at most

polynomial.

3. Show that the algorithm answers "Yes" for any yes-instance and its certificate.
4. Show that the algorithm is not fooled by false certificates for any no-instances.

NP-Hardness and NP-Completeness

If every X ∈ NP is reducible to Y, then Y is NP-hard.

If Y is in NP and Y is NP-hard, then Y is NP-complete.

Proving P != NP

If there exists even one NP-complete problem that is not in P, then NP contains a problem
that is not in P, and so P ≠ NP.

Proving P = NP

If there exists even one NP-complete problem that is in P, then every problem in NP is in P,
and so P = NP

Hard A, Hard B

If A can be reduced to B and A is "hard", then B must be "hard" too.

Since a reduction from A to B means that A is "no harder" than B, we can show that if A
is "hard", then B must be "hard" too
This however, DOES NOT imply "Hard B, Hard A"

You cannot conclude that B being hard implies A being hard. (Since A can be an
algorithm that does not use B)

Proving NP-Hardness

Based on the statement that "If Y can be reduced to Z and Y is NP-hard, then Z must be NP-
hard too", to prove that Z is NP-hard:

1. Find a single problem Y that is NP-hard. (Identify properties of a generic ! in " .)
2. Find a reduction from Y to Z. (Show that 5(!) is true, P(x) = x is reducible to Z)

Proving NP-Completeness

1. Prove Z is in NP.
2. Select Y that is known to be NP-complete.
3. Give an algorithm to compute a function / mapping each instance of Y to an instance of

Z (it needn't map to all of Z)
4. Prove that if x is a yes-instance for Y then f(x) is a yes-instance for Z.
5. Prove that if f(x) is a yes-instance for Z then x is a yes-instance for Y.

6. Prove that the algorithm computing / runs in at most polynomial time.

Caution Regarding the Proof

Make sure the reduction is in the right direction.
Be sure to ensure that / maps all instances of 7 .
Step 5 should not just be a repetition of Step 4.
Don't believe Step 3 without checking Steps 4 and 5. (You might need a few attempts to
get Step 3 right.)
Don't forget Step 6. (It is easy to ignore after all the hard work of the other steps.)

Module 8: Compromising on Time
Because NP-complete problems are unlikely to be able to be solved using algorithms that
run in polynomial time, we need to compromise either on time, as we will discuss in this
module, or on correctness, which we'll discuss in the next module.

Improving on Exhaustive Search

Goals:

Generate only useful possibilities by checking them as we build them up.
Ensure that we do not miss any correct solutions by making sure that no useful
possibilities are missed.

We can describe each group by using a partial solution, a partial specification that
corresponds to the set of all solutions consistent with the information specified.

The process of dividing a group into smaller groups corresponds to the process of
extending a partial solution in all possible ways to form a larger partial solution, if possible.

A partial solution is a candidate if it is of the correct form to be a solution or witness for the
problem.

A candidate needs to have the correct form to possibly be a solution, but is not required
to be a solution.

To make sure that we are not losing any candidates, the union of all the candidates
associated with the extensions of a partial solution will equal the set of candidates
associated with the partial solution.

Search Trees

Instead of constructing the tree and then searching it, we construct the tree implicitly by
using a recursive procedure to explore the partial solutions.

Each node in the tree corresponds to a function application of a recursive function.
Often there is one non-recursive function used at the root of the tree, and a recursive
function used at each of the other nodes.

At an internal node, the subtree rooted at the first child is explored completely before the
subtree rooted at the second child.

Each base case of a recursive function corresponds to a leaf in the implicit search tree,
either a candidate or a partial solution that cannot be extended.
When a base case has been reached, the search backtracks up the tree to find the
closest node that was not completely explored.

Backtracking

The paradigm of backtracking makes use of a search tree to solve a problem.

Sketch

Start with the initial partial solution at the root
Initialize extra information
At the current node:

Stop if the partial solution is a candidate
Stop if the partial solution cannot be extended
Recursively process each child in order
Update the extra information
Update the output

Backtrack

Checlist

Definition of a partial solution
Definition of a partial solution at the root
Definition of extra information
Process for the root
Process for a non-root
Process for determining that a partial solution is a candidate
Process for determining that a partial solution cannot be extended
Process for extending a partial solution
Process for updating the extra information
Process for determining the output

Problem Types

Decision Problems

Search Problems
Enumeration Problems
Optimization Problems

The running time will be bounded above by the product of the number of nodes explored
and the worst-case cost of exploring a node. To reduce the number of nodes searched:

Pruning: Stop search as soon as it is clear that the partial solution cannot lead to a
solution.
Comparing to best-so-far: Stop search when a partial solution cannot lead to a
solution better than the best found so far.
Choosing an ordering: Avoid exploring duplicate solutions and/or explore more likely
candidates first.

Branch-and-Bound

The paradigm of branch-and-bound makes use of a bounding function, which is defined as
follows:

for a maximization problem, the bounding function determines an upper bound on the
value of any candidate formed by extending the current partial solution, and
for a minimization problem, the bounding function determines a lower bound on the
value of any candidate formed by extending the current partial solution.
for this course, we will assume that the order in which nodes are explored is the same as
in backtracking

Sketch

Start with the initial partial solution at the root
Initialize extra information
At the current node:

Stop if the partial solution is a candidate
Stop if the partial solution cannot be extended
Stop if the bound is worse than the best-so-far
Recursively process each child in order
Update the extra information
Update the output

Backtrack

Checklist

Definition of partial solution
Definition of partial solution at the root
Definition of extra information

Definition of a bounding function
Process for the root
Process for a non-root
Process for determining that a partial solution is a candidate
Process for determining that a partial solution cannot be extended
Process for extending a partial solution
Process for updating the extra information
Process for determining the output

Summary of Backtracking and Branch-and-Bound

Properties

Both algorithms depend on the exploration of an implicit search tree, using various
methods to try to reduce how much of the tree needs to be examined.
Backtracking can be used on any problem.
Correctness for backtracking and branch-and-bound depends on making sure that any
pruning is of parts of the tree that cannot contain solutions.
Running time can be prohibitively high.

Constructing solutions more than once, resulting in behaviour worse than
exhaustive search

Types of Outputs

Ordering of elements
Arrangement of elements
Subset of elements
Partition of elements

Module 9: Compromising on Correctness

Approximation Algorithms

An approximation algorithm is an algorithm for an optimization problem with guarantees
concerning the approximate solution it produces.

The approximate solution is a feasible solution.
There is a provable bound on how close the approximate solution is to the optimal
solution.

can be expressed as a ratio A/O, where A is the approximate solution and O is the
optimal solution
For a minimization problem, we want A/O as small as possible (the upper bound on
A)

note that O/A <= 1
For a maximization problem, we want O/A as small as possible (the lower bound on
A)

note that A/O <= 1

Ratio Bounds

An approximation algorithm has a ratio bound of :(+) if for 3, the value of the approximate
solution, and 1, the value of the optimal solution for any instance of size +, max{3/1,1/3}
≤:(+)

A ratio bound gives an upper bound on how bad the output of an approximation
algorithm can be compared to the optimal solution. The bound will hold for any input to
the algorithm.
For a minimization problem, the second term is less than one, so we focus on the first
term (A/O).
For a maximization problem, the first term is less than one, so we focus on the second
term (O/A).

Disproving a ratio bound

Choose an instance ! of size + .
Show that ! is an instance of the problem the algorithm is supposed to solve.
Show that max{3/1,1/3}>:(+) .

Disproving a ratio bound for

Choose a family of instances (for arbitrarily large, not necessarily every value, +).
Show that each instance is an instance of the problem the algorithm is supposed to
solve.
Show that max{3/1,1/3}>.(+) where .(+)≥/(+) and .(+) ∉ Θ(/(+)).

If the ratio bound of an algorithm is a constant (that is, independent of the size of the
instance), then the algorithm has a constant ratio bound

If a problem can be solved by a polynomial-time approximation algorithm with a
constant ratio bound, then the problem is in the complexity class APX.

How can we compared O and A if we do not know the optimal solution?

One way of proving a ratio bound is to relate both 1 and 3 to a third value 88. If we can
find bounds on 1 and 3 in terms of 8 , then we can find an upper bound on max{3/1,1/
3}.

Types of Bounds

Θ(f(n))

For a maximization problem, we find a lower bound on the approximate solution and
an upper bound on the optimal solution.
For a minimization problem, we instead find an upper bound the approximate
solution and a lower bound on the optimal solution.

Analyzing an Approximation Algorithm

1. Choose a new measure or problem.
2. Bound the approximate solution in terms of the new measure or problem.
3. Bound the optimal solution in terms of the new measure or problem.
4. Combine the two results to relate the approximate and optimal solutions.

Inapproximability

An inapproximability result shows that if there exists a certain type of approximation
algorithm for a problem, then P = NP. Since it isn't likely that P = NP, such a result is strong
evidence that no such approximation algorithm exists.

If TSP is in APX, then P=NP.

Heuristics

The search for a solution to an optimization problem can be viewed as the exploration of the
search space of feasible solutions.

Another way to visualize a search space is by plotting the value of each feasible solution
on a vertical axis.

Hill Climbing

For a maximizaation problem, the idea behind hill climbing is that at each step, we move
from the current feasible solution "up a hill" to a better feasible solution.

similar procedure can also be followed for a minimization problem
Characteristics:

Start with an arbitrary feasible solution.
Repeatedly make a small change to improve the feasible solution.
Stop when no more improvements can be made.

This is a known as a local search heuristic as we are looking at changes that move us
from a feasible solution to another one that is "nearby" in the search space.

The key to the strategy is that we make a series of small improvements so that each
new feasible solution is not too different from the previous one.

Limitations:
Moving up a hill to reach its peak may lead to a local maximum (a point with no

higher "neighbour"), but a local maximum is not guaranteed to be the global
maximum.

Other Heuristics

Choose an initial solution judiciously instead of starting with an arbitrary solution.
Use steepest ascent, which chooses the option that gives the best improvement.

Properties

Hill-climbing makes changes in a feasible solution to try to construct a better feasible
solution.
Typically, heuristics are used on optimization problems.
There is no guarantee that the solution is correct.
Depending on how the heuristic is constructed, there may or may not be a guaranteed
bound on running time.

Module 10: Changing the Rules

Assumptions in the Courses So Far

We have no extra information about the instances we will be solving.
By changing this assumption, we look for special cases that make problems easier
to solve

Our algorithms are deterministic.
By changing this assumption, we add randomization to algorithms

When problems are NP-complete, we need to compromise on running time or
correctness.

By changing this assumption, we focus on one or more parameters of a problem
that might be the key to the hardness of the problem

We know the entire input at the start of the computation.
By changing this assumption, we see how to start solving a problem before all of the
input is known.

Strongly and Weakly NP-Complete Problems; Special Instances

An NP-complete problem is

weakly NP-complete if there is a known pseudo-polynomial time algorithm that
solves the problem

we say that an algorithm runs in pseudo-polynomial time if the running time is
polynomial in the largest integer in the input

strongly NP-complete if it can be proved that it cannot be solved by a pseudo-

polynomial time algorithm unless P=NP.

We can solve an instance of a weakly NP-complete problem in polynomial time if the size
of the largest integer used in the running time of the pseudo-polynomial time algorithm is at
most polynomial in the size of the instance.

We may be able to solve an instance of an NP-complete problem in polynomial time for a
certain class of instances.

Special Cases of graph

If we restrict the number of neighbours any vertex can have, as in a bounded degree
graph it might be possible to obtain a faster algorithm.
In a regular graph each vertex has exactly the same number of neighbours; there are
problems that are easier to solve on regular graphs than on graphs in general.
there exist "treelike" graphs, known as graphs of bounded treewidth, which, although
they are not necessarily trees, have some of the same useful properties.
planar graphs, graphs that can be drawn on a piece of paper without any of the lines
crossing, can be split into smaller planar graphs of size at most 2+/3 by removal of a
small number of vertices

Randomized Algorithms

All the algorithms we have seen so far are deterministic, which means that the steps taken
by an algorithm on a specific instance are completely determined: if the algorithm is run
repeatedly on the same instance, each time it runs, it will behave the same way.

This type of behaviour is true even in when we used arbitrary choices when making
decisions for greedy algorithms

In a randomized algorithm, certain steps are chosen randomly, in a manner equivalent to
flipping a coin to decide what to do. Because different courses of action are possible, the
same algorithm on the same instance may lead to different running times (ex: Las Vegas),
or may lead to different outputs (Monte Carlo).

Running Time

When randomly-chosen steps result in different running times for different executions
of the same algorithm on the same instance, algorithms are assessed based on the
running time, averaged over all possible executions.

The expected running time is not the same as the average case, which we used to
discuss the behaviour of deterministic algorithms.

The average case is based on a probability distribution on the instances
To determine such a probability distribution, it is necessary to make

assumptions about the relative likelihood of the possible instances being used.
to calculate expected running time, we consider the average over possible
executions on a single instance. There is no dependence on assumptions about
distributions on instances.

Las Vegas Algorithm

A Las Vegas algorithm is guaranteed to give the correct answer in expected polynomial
time.

In general, calculating expected running times can be challenging. We will consider only
a few simple examples in this course
Sometimes, randamized your algorithm will lead to faster running time, but the
algorithm will only work well if the randomized result is good.

if it is bad, make sure to randomly choose another one.

The running times of the algorithms depend on the probability of choosing a "good
parameter", which results in a low running time

For randomized algorithms that you implement in this course, you will use the built-in
random module.

Monte Carlo Algorithm

A Monte Carlo algorithm is guaranteed to run in time polynomial in the size of the input,
and gives the correct answer with high probability.

For situations in which the randomness has an impact on the correctness of decision
problems, we distinguish between false positives (the algorithm produces "yes" for a no-
instance) and false negatives (the algorithm produces "no" for a yes-instance).

For a decision problem, if there can be both false positive and false negatives, the error
is considered to be two-sided error. If there can only be false positives, or if there can
only be false negatives, the situation is considered to have one-sided error.

Reducing Errors

For an algorithm with one-sided error, the probability of error will decrease as the
number of repetitions increases. If there is a probability of error of ; for each iteration,
after , iterations the probability of error is .
For two-sided error, repetition can also be used to reduce the probability of error. To
determine the answer, the algorithm will count the number of yeses and the number of
nos obtained and return whatever appears more times.

Monte Carlo vs. Las Vegas

pk

If we have a Las Vegas algorithm, it is possible to convert it to a Monte Carlo algorithm.
we do this by sacrificing the correctness of Las Vegas algorithm

There is no known general way to convert a Monte Carlo algorithm to a Las Vegas
algorithm.

Pros and Cons of Randomized Algorithms

Pros

With luck, it can be faster than a deterministic algorithm.
A randomized algorithm may be simpler than a deterministic algorithm.
Different answers on different runs may allow repeated runs to increase confidence in an
answer.

Cons

You may give up guarantees on worst-case time or correctness.
Debugging is difficult, as there may be different outputs on different runs.
Analysis is often difficult, such as the solving of probabilistic recurrence relations
(outside the scope of this course).

Parameterized Algorithms

Parameterized Problems

We can define a problem using , as a parameter, forming a parameterized problem. Our
goal is to create a function that is polynomial in terms of the instance size, but possibly
much worse in terms of the parameter or parameters.

Parameterized Algorithms

A fixed-parameter tractable algorithm runs in time , where p is a parameter
and g is any function

The function . must be a function of ; only, and not a function of + .

Bounded Search Tree

The bounded search tree paradigm makes use of a search tree, like in backtracking and
branch-and-bound

the worst-case cost of building and exploring a search tree can be bounded above by
the product of the number of nodes in the tree and the cost of creating and exploring a
single node
the parameter ; is used to determine when to stop searching

O(g(p)nO(1))

A tree of height ℎ in which each node has at most) children has nodes.

Kernelization

Kernelization is the process of replacing an instance by a kernel, a smaller instance of
same problem. Our goal is to ensure the following properties:

1. the kernel is a yes-instance if and only if the original instance is a yes-instance, and
in order to solve the original instance, all we need to do is (a) form the kernel and
then (b) solve the problem on the kernel
To obtain an algorithm that is fixed-parameter tractable, we need to make sure that
(a) and (b) can both be accomplished by fixed-parameter tractable algorithms.

2. the size of the kernel is bounded by a function of ; .
exponential in a function of ; is still a function of ; , and hence still fixed-parameter
tractable

To use the kernelization approach, we'd like to show the following:

Solving the problem on the kernel can be used to solve the original instance.
The size of the kernel is bounded by a function of , .

Fixed-Parameter Complexity

A problem is in the complexity class FPT if there exists a fixed-parameter tractable algorithm
that solves the problem.

Just like P is "easy" and NP-complete is "hard", for parameterized problems, FPT is "easy"
and W[1]-hard is "hard". In fact, there is a hierarchy of "hard" classes, where W[i+1] is
harder than W[i].

If there is a parameterized reduction from 3 to 4 and 4 is in FPT, then 3 is also in FPT.

In such a reduction, the size of the parameter in 4 is a function of the size of the
parameter in 3 , and the instance can be created in FPT time.
the polynomial-time reduction does not ensure that the size of the parameter is bonded,
and therefore may not be a parameterized reduction

Online Algorithms

Algorithms that have access to all of the input before starting computation are known as
offline algorithms.

If instead the algorithm is required to start making decisions before all of the input has been
provided, it is called an online algorithm.

O(ch)

Competitive Ratios

An online algorithm has competitive ratio) if the cost is at most)) times the cost of the
best offline algorithm for any input. The cost can be running time or other costs such as
solution values.

Module 11: Extra Fun Stuff

Turing Machine

The significance of Turing machines lies in the Church-Turing thesis, which states that a
function can be computed if and only if it can be computed using a Turing machine

Circuit Models

A Boolean circuit is formed from gates, where the output of a gate may be connected by a
wire to an input of another gate.

Examples:

OR: the output is a 1 if any input is a 1 and 0 otherwise
AND: the output is a 1 if all inputs are 1's and 0 otherwise
NOT: the output is a 1 if the input is a 0 and 1 otherwise

To determine the cost of an algorithm on a circuit, typical measures include the number of
gates in a circuit (size of a circuit) and the maximum number of gates on the path from an
input gate to the output gate (depth of a circuit).

It is also possible to form an arithmetic circuit, and the gates compute arithmetic
operations

Types of Computation Machines

Parallel computation

uses multiple machines that coordinate to split the work.
Consider the following questions:

Can more than one machine read the same variable at the same time?
Can more than one machine write the same variable at the same time?
What happens if multiple machines write the same variable at the same time?

Distributed computation

involves communication among multiple machines by passing messages
asynchronously.

A simple, but not easy, task in a distributed environment is consensus, for which the
goal is to get all the processes to agree on a value, such that:

all processes that don't crash output the same value, and
the value is an input to one of the processes.

Quantum computation

studies the power and limitations of quantum computers.
Quantum computers use quantum bits that can have more complicated values than 0's
and 1's. Information can be combined in quantum registers, made up of multiple
quantum bits

Complex Relations Among Data Items

Data structures are various ways of organizing data in computer memory. Different
arrangements lead to different costs for accessing and updating data. Efficient algorithms
can rely on the choice of data structures that are used.

Numerial Data

for handling of very large numbers, arithmetic operations have a cost proportional to the
space needed to store the value.

Since the number of bits in a binary numbers is logarithmic in the size of the number ,
this model is known as a log cost model.

Handling Change

A variety of different types of change are handled in algorithms using terms such adaptive
and dynamic.

Analyzing Algorithms

An output sensitive algorithm has a running time measured in terms of not only the size of
the input but also the size of the output

For a sequence of independent tasks, we might use amortized analysis, which focuses on
the cost of a worst-case sequence of tasks rather than an individual task in isolation.

Complexity for Time and Space

If instead we have a polynomial-time verification algorithm using a polynomial-size
certificate for every no-instance, our problem is in co-NP

A problem that is in the intersection of NP and co-NP, that is one for which there exist
polynomial-size certificates for both yes-instances and no-instances, is in P

An entire hierarchy can be built by further generalizations of the classes P and NP, and can
be defined using a type of Turing machine known as an alternating Turing machine, which
allows the expression of universal and existential statements.

As you go up the polynomial-time hierarchy, classes of problems can be expressed using
more and more alternations between universal and existential statements.

The complex structure of classes in the hierarchy is a fragile one, however, since it is not
known whether the classes are distinct. If P = NP, then the entire hierarchy collapses,
with all classes in the hierarchy being equal to P.

The class PSPACE consists of problems that can be solved using a polynomial amount of
space.

Anything that is in P is in PSPACE
In fact, every class in the polynomial-time hierarchy is contained in PSPACE

Complexity of Approximation Algorithms

An approximation algorithm has a relative error bound of <(+) if |3−1|/1≤<(+) , where 3 is the
value of the solution obtained by the algorithm and 1 is the value of the optimal solution.

Such an algorithm is called an <<(++) -approximation algorithm.

Given an algorithm that obtains a particular relative error bound, it may be possible to
decrease the relative error bound by increasing the running time.

When it is possible to do so for any chosen relative error bound, the way of forming such
a family of approximation algorithms is known as an approximation scheme.

More formally, an approximation scheme can be viewed as an algorithm that produces
algorithms. Such an algorithm takes as input an instance and an < such that for any fixed < , it
produces an approximation algorithm with relative error bound < .

The algorithm is a polytime approximation scheme if for any fixed < , the running time
is polynomial in the size of the instance.
The algorithm is a fully polytime approximation scheme if the running time is
polynomial in both 1/< and + .

Compelxity Class of Approximation Algorithms

APX contains any problem that can be solved by a polynomial-time approximation
algorithm with constant ratio bound.

PTAS contains any problem that can be solved by a polynomial-time approximation
scheme.
FPTAS contains any problem that can be solved by a fully polynomial-time
approximation scheme

FPTAS ⊆ PTAS ⊆ APX

A problem is APX-hard if there is a PTAS-reduction from every problem in APX to that
problem

Complexiy for Randomized Algorithms

RP contains any problem that can be solved using a Monte Carlo algorithm with
bounded one-sided error and polynomial running time.
BPP contains any problem that can be solved using a Monte Carlo algorithm with
bounded two-sided error and polynomial running time.
ZPP contains any problem that can be solved using a Las Vegas algorithm with
expected polynomial running time.

The classes can be related as follows: ZPP ⊆ RP ⊆ BPP

Sometimes a randomized algorithm can be derandomized to form a deterministic algorithm.
One option is to make the number of random bits small enough that all possibilities can be
tried in polynomial time, using exhaustive search.

We can form the following hierarchy: P ⊆ ZPP ⊆ RP ⊆ NP

You may have noticed that BPP is not listed here, as the relationship between BPP and NP is
unknown. It is known that if P = NP, then P = BPP.

Complexity for Prallel computation

the class NC is used to classify "good" problems that can be solved in 1(log^) (+)) time
using a polynomial number of processors.

Since NC is considered "easy" and P is considered "hard" in this setting, we can define
problems to be P-hard based on NC reductions.

Reductions and classes have also been defined with respect to space. The class L contains
decision problems that can be solved deterministically in logarithmic space, and the class
NL consists of decision problems that can be solved nondeterministically in logarithmic
space.

The classes are related as follows: NC ⊆ L ⊆ NL ⊆ P. Whether NC is equal to P is another
open question.

Computability

The area of computability categorizes problems that cannot be solved at all.

